Published on Web 04/15/2009

Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization

Bryan T. Op’t Holt, Michael A. Vance, Liviu M. Mirica, ${ }^{\dagger}$ David E. Heppner, T. Daniel P. Stack,* and Edward I. Solomon*
Department of Chemistry, Stanford University, Stanford, California 94305

Received October 9, 2008; E-mail: stack@stanford.edu; edward.solomon@stanford.edu

Abstract

The $\mu-\eta^{2}: \eta^{2}$-peroxodicopper(II) complex synthesized by reacting the $\mathrm{Cu}(\mathrm{I})$ complex of the bisdiamine ligand N, N^{\prime}-di-tert-butyl-ethylenediamine (DBED) with O_{2} is a functional and spectroscopic model of the coupled binuclear copper protein tyrosinase. This complex reacts with 2,4-di-tert-butylphenolate at low temperature to produce a mixture of the catechol and quinone products, which proceeds through three intermediates $(\mathbf{A}-\mathbf{C})$ that have been characterized. \mathbf{A}, stabilized at 153 K , is characterized as a phenolatebonded bis- μ-oxo dicopper(III) species, which proceeds at 193 K to B, presumably a catecholate-bridged coupled bis-copper(II) species via an electrophilic aromatic substitution mechanism wherein aromatic ring distortion is the rate-limiting step. Isotopic labeling shows that the oxygen inserted into the aromatic substrate during hydroxylation derives from dioxygen, and a late-stage ortho $-\mathrm{H}^{+}$transfer to an exogenous base is associated with $\mathbf{C}-\mathrm{O}$ bond formation. Addition of a proton to \mathbf{B} produces \mathbf{C}, determined from resonance Raman spectra to be a $\mathbf{C u}(I I)$-semiquinone complex. The formation of \mathbf{C} (the oxidation of catecholate and reduction to $\mathrm{Cu}(\mathrm{I})$) is governed by the protonation state of the distal bridging oxygen ligand of \mathbf{B}. Parallels and contrasts are drawn between the spectroscopically and computationally supported mechanism of the DBED system, presented here, and the experimentally derived mechanism of the coupled binuclear copper protein tyrosinase.

A. Introduction

The coupled binuclear copper proteins fulfill various important biological functions. ${ }^{1-4}$ Hemocyanin (Hc) reversibly binds dioxygen in mollusks and arthropods; catechol oxidase (CO) binds dioxygen and oxidizes catechols to quinones as an injury response mechanism in plants. Tyrosinase (Ty), widely distributed in nature, reversibly binds dioxygen, hydroxylates monophenols to catechols, and performs the subsequent oxidation of catechols to quinones. Although these proteins exhibit different enzymatic functions, their spectroscopic properties ${ }^{5}$ and crystallographic structures reveal striking electronic and geometric similarities among their active sites. ${ }^{6-8}$ Upon O_{2} binding, Hc, CO, and Ty all exhibit a characteristic side-on bridging $\mu-\eta^{2}: \eta^{2}$ peroxodicopper(II) active site (\mathbf{P}). In O_{2}-bonded Ty (oxyTy),

[^0]the phenolic substrate binds directly to one Cu ion ${ }^{9,10}$ and is hydroxylated via a mechanism consistent with electrophilic aromatic substitution (EAS). In the spectroscopically determined mechanism for Ty activity, \mathbf{P} is the only form of oxyTy observed, ${ }^{5}$ and potential intermediates beyond \mathbf{P} are unknown (Scheme 1).
The capability of oxyTy to activate and hydroxylate the ortho-$\mathrm{C}-\mathrm{H}$ bond in a phenol is the most impressive function of coupled binuclear copper enzymes. This reactivity has motivated intense efforts by many groups to replicate synthetically the \mathbf{P} complex ${ }^{11,12}$ and its ability to hydroxylate substrates. ${ }^{12-22}$ The
(9) Wilcox, D. E.; Porras, A. G.; Hwang, Y. T.; Lerch, K.; Winkler, M. E.; Solomon, E. I. J. Am. Chem. Soc. 1985, 107, 4015-4027.
(10) Winkler, M. E.; Lerch, K.; Solomon, E. I. J. Am. Chem. Soc. 1981, 103, 7003-7005.
(11) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1045.
(12) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076.
(13) Cruse, R. W.; Kaderli, S.; Meyer, C. J.; Zuberbühler, A. D.; Karlin, K. D. J. Am. Chem. Soc. 1988, 110, 5020-5024.
(14) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2002, 124, 93329333.
(15) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. Science 2005, 308, 1890-1892.
(16) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2006, 128, 26542665.
(17) Pidcock, E.; Obias, H. V.; Zhang, C. X.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 7841-7847.
(18) Itoh, S.; Kumei, H.; Taki, M.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 6708-6709.
(19) Palavincini, S.; Granata, A.; Monzani, E.; Casella, L. J. Am. Chem. Soc. 2005, 127, 18031-18036.

Scheme 1. Experimentally Derived Mechanism for the Hydroxylation Reaction of Tyrosinase ${ }^{a}$

${ }^{a} \mathrm{~N}$ represents His ligation from the protein and one such ligand has been omitted from each Cu for clarity. The arrow on the O in step 2 denotes rearrangement of the phenolate into the equatorial plane. Adapted from ref 1.
first structurally characterized \mathbf{P} complex was described by Kitajima et al. with the tridentate $\left[\mathrm{Cu}\left(\mathrm{HB}-\left(3,5-\mathrm{iPr}_{2} \mathrm{pz}\right)_{3}\right)\right]_{2}\left(\mathrm{O}_{2}\right)$ system, which exhibited similar electronic spectra as the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ cores of O_{2}-bonded Hc and oxyTy that are known to be \mathbf{P} species. ${ }^{23}$ Karlin and co-workers showed that a system with Py2-m-xyl ${ }^{\mathrm{R}}$ ligands forms a \mathbf{P} complex capable of hydroxylating an arene ring. ${ }^{24-26}$ Tolman and co-workers first described a new $\mathrm{Cu}_{2} / \mathrm{O}_{2}$ motif lacking an $\mathrm{O}-\mathrm{O}$ bond, ${ }^{27}$ a bis- μ-oxo dicopper(III) species $(\mathbf{O}),{ }^{28-31}$ which was in equilibrium with a \mathbf{P} species. ${ }^{32,33}$ Stack and co-workers have used sterically demanding diamine frameworks to produce equilibrium mixtures of \mathbf{P} and $\mathbf{O}{ }^{33}$

In particular, reaction of the $\mathrm{Cu}(\mathrm{I})$ complex of N, N^{\prime}-di-tert-butyl-ethylenediamine (DBED) with O_{2} in aprotic solvent at 193 K generates such a mixture, comprised of $\sim 95 \% \mathbf{P}^{\text {DBED }}$ and $\sim 5 \% \mathbf{O}^{\text {DBED }}$, as elucidated by resonance Raman (rR) experiments on isotopically labeled complexes. ${ }^{14,16}$ The $\mathrm{O}_{2^{-}}$
(20) Santagostini, L.; Gullotti, M.; Monzani, E.; Casella, L.; Dillinger, R.; Tuczek, F. Chem. Eur. J. 2000, 6, 519-522.
(21) Karlin, K. D.; Haka, M. S.; Cruse, R. W.; Meyer, G. J.; Farooq, A.; Gultneh, Y.; Hayes, J. C.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 1196-1207.
(22) Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon, E. I.; Ralle, M.; Blackburn, N. J.; Neuhold, Y.-M.; Zuberbühler, A. D.; Karlin, K. D. J. Am. Chem. Soc. 1998, 120, 12960-12961.
(23) Kitajima, N.; Fujisawa, K.; Morooka, T.; Toriumi, K. J. Am. Chem. Soc. 1989, 111, 8975-8976.
(24) Karlin, K. D.; Hayes, J. C.; Gultneh, Y.; Cruse, R. W.; McKown, J. W.; Hutchison, J. P.; Zubieta, J. J. Am. Chem. Soc. 1984, 106, 21212128.
(25) Murthy, N. N.; Mahroof-Tahir, M.; Karlin, K. D. Inorg. Chem. 2001, 40, 628-635.
(26) Karlin, K. D.; Tyeklàr, Z.; Farooq, A.; Haka, M. S.; Ghosh, P.; Cruse, R. W.; Gultneh, Y.; Hayes, J. C.; Toscano, P. J.; Zubieta, J. Inorg. Chem. 1992, 31, 1436-1451.
(27) Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Kaderli, S.; Young, V. G.; Cramer, C. J.; Que, L., Jr.; Tolman, W. B. Science 1996, 271, 1397-1400.
(28) Cole, A. P.; Mahadevan, V.; Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Inorg. Chem. 2005, 44, 7345-7364.
(29) Mahadevan, V.; DuBois, J. L.; Hedman, B.; Hodgson, K. O.; Stack, T. D. P. J. Am. Chem. Soc. 1999, 121, 5583-5584.
(30) Mahadevan, V.; Hou, Z. G.; Cole, A. P.; Root, D. E.; Lal, T. K.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 1997, 119, 1199611997.
(31) Stack, T. D. P. Dalton Trans. 2003, 10, 1881-1889.
(32) Cahoy, J.; Holland, P. L.; Tolman, W. B. Inorg. Chem. 1999, 38, 21612168.
(33) Mahadevan, V.; Henson, M. J.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2000, 122, 10249-10250.

Figure 1. Electronic absorption spectra of $\mathbf{P}^{\text {DBED }}, \mathbf{A}, \mathbf{B}$, and \mathbf{C}.
Scheme 2. Reaction between PDBED and 2,4-Di-tert-butylphenolate at 153 K , with the Formation of \mathbf{A}, \mathbf{B}, and \mathbf{C}

bonded dicopper DBED complex reacts with $1-5$ equiv of sodium 2,4-di-tert-butylphenolate at 193 K to produce an $\sim 1: 1$ ratio of 3,5-di-tert-butyl-1,2-benzoquinone and 3,5-di-tert-butylcatechol. The spectroscopic and functional similarities of the $\mathbf{P}^{\text {DBED }}$ system to oxyTy invite a more detailed comparison. $\mathbf{P}^{\text {DBED }}$ reacts more slowly with electron-deficient aromatic phenolates, (Hammett $\rho=-2.2$), consistent with an EAS mechanism. The Hammett parameter for oxyTy is $\rho=-2.4$, suggesting that oxyTy also follows an EAS mechanism. ${ }^{15}$

The reaction of $\mathbf{P}^{\text {DBED }}$ with 2,4-di-tert-butylphenolate performed at 153 K leads to the formation of intermediate $\mathbf{A},{ }^{15} \mathrm{a}$ phenolate-bonded bis- μ-oxo dicopper(III) (an \mathbf{O} species) complex that oxygenates the phenolate via subsequent intermediates \mathbf{B} and \mathbf{C} (vide infra). Each of these species is studied here spectroscopically and computationally to evaluate potential molecular mechanisms of phenolate hydroxylation. This study follows the electronic and structural changes occurring as the reaction proceeds from \mathbf{A} to \mathbf{C}, with the intent of comparing the model and enzymatic systems.

B. Results and Analysis

I. Spectroscopy of Intermediates. Absorption Spectra of $\mathbf{P}^{\text {DBED }}, \mathbf{A}, \mathbf{B}$, and \mathbf{C}. The UV/vis absorption spectra of $\mathbf{P}^{\text {DBED }}$, \mathbf{A}, \mathbf{B}, and \mathbf{C} are shown in Figure 1. $\mathbf{P}^{\text {DBED }}$ exhibits a characteristic intense $28500 \mathrm{~cm}^{-1}\left(350 \mathrm{~nm}, \varepsilon=36000 \mathrm{M}^{-1}\right.$ cm^{-1}) band associated with a side-on-peroxo $\pi_{\sigma}{ }^{*} \rightarrow \mathrm{Cu}(\mathrm{II}) \mathrm{d}_{x^{2}-y^{2}}$ charge transfer (CT) and a weaker band at $\sim 20000 \mathrm{~cm}^{-1}$ (500 $\mathrm{nm}, \varepsilon=1000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) assigned to an out-of-plane peroxo $\rightarrow \mathrm{Cu}$ (II) CT. ${ }^{11,14,34,35}$ Addition of >2 equiv of phenolate at 153 K maximizes the formation of intermediate \mathbf{A} (Scheme 2), with markedly different absorption features from $\mathbf{P}^{\text {DBED }}$. A exhibits three main features: a $\sim 34000 \mathrm{~cm}^{-1}$ band ($295 \mathrm{~nm}, \varepsilon$ $=20000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$), a $\sim 23900 \mathrm{~cm}^{-1}$ band ($418 \mathrm{~nm}, \varepsilon=$

[^1]

Figure 2. (A) rR spectra of \mathbf{A} with ${ }^{16} \mathrm{O}$ - and ${ }^{18} \mathrm{O}$-substituted phenolate and ${ }^{16} \mathrm{O}$ - and ${ }^{18} \mathrm{O}$-substituted dioxygen in THF/2-MeTHF at 77 K with 413 nm excitation. (B) Solvent subtracted ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$-substituted phenolate spectrum of \mathbf{A} at 77 K with isotope shifts labeled.
$18000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$), and a less intense $\sim 15800 \mathrm{~cm}^{-1}$ band (630 $\mathrm{nm}, \varepsilon=3800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). The intense $\sim 34000 \mathrm{~cm}^{-1}$ band is present in all spectra except $\mathbf{P}^{\text {DBED }}$ and is associated with excess phenolate in solution. At $153 \mathrm{~K}, \mathbf{A}$ converts within hours to intermediate \mathbf{B}, with no strong (i.e., $\varepsilon>1000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) absorption feature in the visible region. \mathbf{C} results from the addition of sufficient equivalents of protons to neutralize the added phenolate in \mathbf{B}. \mathbf{C} is a purple complex with an absorption band at $\sim 18200 \mathrm{~cm}^{-1}\left(550 \mathrm{~nm}, \varepsilon=3000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.
Intermediate A. Vibrational Data. Resonance Raman (rR) data in the metal-ligand region of \mathbf{A} along with ${ }^{18} \mathrm{O}$ isotope perturbations demonstrate clearly that \mathbf{A} is a bis- μ-oxo dicopper(III) complex on the basis of the presence of a $589 \mathrm{~cm}^{-1}$ peak that shifts by $25 \mathrm{~cm}^{-1}$ upon ${ }^{18} \mathrm{O}_{2}$ substitution (Figure 2). These features and shifts are characteristic of the symmetric stretch of a bis- $\mathrm{Cu}(\mathrm{III})$-bis- μ-oxo-type complex. ${ }^{15}$ Additional isotope substitution experiments were made by combining ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ substituted 2,4-di-tert-butylphenolate with ${ }^{16} \mathrm{O}_{2}$ and ${ }^{18} \mathrm{O}_{2}$, resulting in four possible isotopic combinations: ${ }^{16} \mathrm{OPh}^{-} /{ }^{16} \mathrm{O}_{2}$, ${ }^{16} \mathrm{OPh}^{-} /{ }^{18} \mathrm{O}_{2},{ }^{18} \mathrm{OPh}^{-} /{ }^{16} \mathrm{O}_{2}$, and ${ }^{18} \mathrm{OPh}^{-} /{ }^{18} \mathrm{O}_{2}$. Six peaks are sensitive to both phenolate and O_{2} isotopic substitution. On the basis of large ${ }^{18} \mathrm{O}_{2}$ isotope shifts, the vibrations at 648,589 , and $560 \mathrm{~cm}^{-1}$ are assigned as modes of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core. Importantly, phenolate isotopic substitution perturbs the primary $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core modes, verifying that phenolate is bonded to the bis- μ-oxo complex in an equatorial position of the Cu . Coupling from an axially bonded ligand would be insufficient to perturb the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core modes. In addition to the three $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core modes, \mathbf{A} has four resonance-enhanced modes at 539, 512, 485, and $386 \mathrm{~cm}^{-1}$. Normally, $\mathrm{Cu}_{2} \mathrm{O}_{2}$ species show one $\mathrm{Cu}_{2} \mathrm{O}_{2}$ symmetric core stretch and one $\mathrm{Cu}-\mathrm{N}$ stretch, not seven vibrational features, as observed.
Typical phenolate aromatic ring modes were observed at 1280 and $1598 \mathrm{~cm}^{-1}$ for A upon 650 nm excitation (Figure 3B). The modes are assigned in Table 1. The $1280 \mathrm{~cm}^{-1}$ peak has an ${ }^{16-18} \mathrm{O}_{2}$ shift of $20 \mathrm{~cm}^{-1}$ which is not enhanced in the 413 nm excitation (Figure 3, insets), allowing its assignment as a $v_{\mathrm{C}-\mathrm{O}}$ vibration, further verifying the presence of bonded phenolate. Additional aromatic modes were observed at 1077, 1177, and $1486 \mathrm{~cm}^{-1}$ with 413 nm excitation (Figure 3A).

Figure 3. rR spectrum of \mathbf{A} at 77 K with ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$-substituted phenolate in THF/2-MeTHF (A) 413 nm excitation (B) 650 nm excitation. Inset: rR with 600 nm excitation showing isotopic shift of $1280 \mathrm{~cm}^{-1}$ vibration. Insert spectra: solvent, black; ${ }^{16} \mathrm{O}_{2} /{ }^{16} \mathrm{OPh}$, green; ${ }^{16} \mathrm{O}_{2} /{ }^{18} \mathrm{OPh}$, blue; ${ }^{18} \mathrm{O}_{2} /{ }^{16} \mathrm{OPh}$, red; ${ }^{16} \mathrm{O}_{2} /{ }^{16} \mathrm{OPh}$, pink.

The $\mathrm{Cu}-\mathrm{L}$ and core $\mathrm{Cu}_{2} \mathrm{O}_{2}$ modes can provide insight into the number and coordination of bonded phenolate ligand(s). A symmetric $D_{2 h} \mathrm{Cu}_{2} \mathrm{O}_{2} \mathrm{~N}_{4}$ core has one symmetry-allowed $\mathrm{Cu}-\mathrm{L}$ mode that gains intensity, which is the totally symmetric $\mathrm{Cu}-\mathrm{N}$ stretching mode. This behavior is observed in rR spectrum of the $\left[\left[\left(\mathrm{MeO}-\mathrm{MePY}_{2}\right) \mathrm{Cu}\right]_{2}\left(\mathrm{O}_{2}\right)\right]^{2+}$ bis- μ-oxo dicopper(III) complex, for example, where one $\nu_{\mathrm{Cu}-\mathrm{N}}$ vibration is observed at $\sim 530 \mathrm{~cm}^{-1} \cdot{ }^{36} \mathbf{A}$ exhibits four $\mathrm{Cu}-\mathrm{L}$ modes (vide supra), all in the range of alkyl amine $v_{\mathrm{Cu}-\mathrm{N}}$ modes (with phenolate $\mathrm{O}-\mathrm{Cu}$ mixed in, based on isotope perturbations in Figure 2B). Expected equatorial vibrations for one and two phenolates bonded to the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core in either a cis or trans configuration are shown in Table 2 (top). In both bis-phenolate structures, only the symmetric stretches highlighted in Table 2 (top) are expected to gain significant rR intensity, resulting in one $\nu_{\mathrm{Cu}-\mathrm{N}}$ vibration and one $v_{\mathrm{Cu}-\mathrm{OPh}}$ stretch for each structure. For a monophenolate, the structure's molecular symmetry is decreased, and multiple $v_{\mathrm{Cu}-\mathrm{N}}$ modes, which mix with $v_{\mathrm{Cu}-\mathrm{O}}$ modes, would be observed in the rR spectra. The observation of four $\mathrm{Cu}-\mathrm{L}$ modes indicates that only one phenolate is bonded equatorially. From ${ }^{18} \mathrm{OPh}$, the $485 \mathrm{~cm}^{-1}$ band in Figure 2 shows significant phenolate -Cu stretching character and virtually no ${ }^{18} \mathrm{O}_{2}$ dependence. The 539 cm^{-1} band is not sensitive to oxygen isotopic substitution and is assigned as the symmetric $v_{\mathrm{Cu}-\mathrm{N}}$ of the two equatorial amines bonded to the Cu that is not ligated to phenolate. The 512 and $386 \mathrm{~cm}^{-1}$ bands are assigned as a combination of stretches of the copper center with an equatorial phenolate and diamine.

The $v_{\mathrm{Cu}-\mathrm{O}}$ modes further confirm this assignment (Table 2 bottom). As only symmetric modes are enhanced in the rR spectrum for a given structure, only two $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core symmetric A_{1} normal modes will be symmetry allowed for a cis-bisphenolate structure with effective $C_{2 v}$ symmetry. Likewise, only two A_{g} modes would be symmetry allowed for a trans-bisphenolate structure with effective $C_{2 h}$ symmetry. However, the single-phenolate structure, with C_{s} symmetry, could exhibit up to four enhanced $v_{\mathrm{Cu}-\mathrm{O}}$ modes, three of which are experimentally observed, further confirming a single equatorially bonded phenolate complex as the identity of \mathbf{A}.
(36) Henson, M. J.; Vance, M.; Zhang, C. X.; Liang, H. C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 5186-5192.

Table 1. Phenolate Distortions upon Out-of-Plane and In-Plane CT and Assignments ${ }^{a}$

[^2]The expected core distortion (DFT-calculated structure of A, vide infra) for the equatorially bonded phenolate is represented by a linear combination of the $\mathrm{A}_{\mathrm{g}}, \mathrm{B}_{2 \mathrm{u}}$, and $\mathrm{B}_{3 \mathrm{u}}$ distortions from $D_{2 h}$ symmetry (Table 2 bottom). The most intense core distortion will be the A_{1} mode (A_{g} in $D_{2 h} ; \mathrm{A}^{\prime}$ in C_{s}), which is assigned to the $589 \mathrm{~cm}^{-1}$ band. The other two $v_{\mathrm{Cu}-\mathrm{O}}$ modes at 648 and 560 cm^{-1} are assigned as the C_{s} representations of the $\mathrm{B}_{2 \mathrm{u}}$ and $\mathrm{B}_{3 \mathrm{u}}$ modes in $D_{2 h}$, respectively.
rR Profiles. Both the ~ 23800 and $\sim 15400 \mathrm{~cm}^{-1}$ absorbance bands of \mathbf{A} were profiled in the $\mathrm{Cu}-\mathrm{L}$ and intraligand regions of the rR spectrum with multiple excitation energies (Figure 4). The high-energy absorption band is dominated by the 589 $\mathrm{cm}^{-1} \mathrm{~A}^{\prime}$ (C_{s} symmetry) core mode. The $648 \mathrm{~cm}^{-1} \mathrm{~B}_{3 \mathrm{u}} v_{\mathrm{Cu}-\mathrm{O}}$ mode and the $\mathrm{Cu}-\mathrm{L}$ modes at 512 and $485 \mathrm{~cm}^{-1}$ also profile across the $\sim 23800 \mathrm{~cm}^{-1}$ band. This behavior is consistent with the assignment of the $\sim 23800 \mathrm{~cm}^{-1}$ band as an oxo- Cu (III) CT transition. Both the $v_{\mathrm{Cu}-\mathrm{O}}$ and $\mathrm{Cu}-\mathrm{L}$ modes also profile weakly across the $\sim 15400 \mathrm{~cm}^{-1}$ band. From Figure 4 (bottom), the phenolate ring modes at 1598 and $1280 \mathrm{~cm}^{-1}\left({ }^{16-18} \mathrm{OPh}^{-}=\right.$ $20 \mathrm{~cm}^{-1}$) profile across the $\sim 15400 \mathrm{~cm}^{-1}$ absorption band, allowing assignment of this transition as a phenolate-to- $\mathrm{Cu}(\mathrm{III})$ CT transition. Alternatively, the other phenolate ring modes at 1077, 1177, and $1486 \mathrm{~cm}^{-1}$ are resonance-enhanced in the higher energy band, but not the lower energy band (Figure 4 bottom). The two distinct sets of phenolate ring modes indicate that two distinct phenolate-to-Cu charge transfers exist, one at ~ 15400 cm^{-1} and another overlapping the $\sim 23800 \mathrm{~cm}^{-1}$ oxo-to- Cu (III) CT band, with different excited-state distortions.

The two highest energy occupied orbitals available in a phenolate for CT to the Cu are the π in-plane $\left(\tau_{\mathrm{ip}}\right)$ and π out-of-plane ($\pi_{\text {op }}$) orbitals, with the latter at higher energy, leading to a lower energy phenolate to $\mathrm{Cu}(\mathrm{III}) \mathrm{CT}$ transition. Charge transfer transitions from these two orbitals lead to different excited-state distortions and thus enhance different ring modes. This was tested with DFT calculations in which an electron was selectively removed from either the π_{ip} or $\pi_{\text {op }}$ phenolate orbital,
and the geometry was optimized and compared to that of the ground state (Table 1 left and Table S1). The $\pi_{\text {op }}$ CT distorts along the $\mathrm{C}-\mathrm{O}$, the ortho- C and meta- C bonds with the orthoand meta $-\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles distorting out-of-phase which enhances the 1598 and $1280 \mathrm{~cm}^{-1}$ vibrations (Table 1). The π_{ip} CT distorts along the $\mathrm{C}-\mathrm{O}, \mathrm{C}$-ortho- $\mathrm{C}, \mathrm{C}-$ meta- C , and C -para- C bonds with the ortho- and meta $-\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles distorting in-phase, which result in the enhancement of the 1077, 1177 , and $1486 \mathrm{~cm}^{-1}$ vibrations. Phenolate vibrations expected to be enhanced by the excited-state distortions associated with the π_{op} CT are present in the $\sim 15400 \mathrm{~cm}^{-1}$ absorption band, while the vibrational modes associated with the excited-state distortion generated by the π_{ip} CT are enhanced in the ~ 23800 cm^{-1} band. The rR profiling allows the low-energy transition to be assigned as a phenolate $\pi_{\mathrm{op}}-\mathrm{Cu} \mathrm{CT}$, while the higher energy $\pi_{\mathrm{ip}}-\mathrm{Cu}$ CT contributes intensity in the $\sim 23800 \mathrm{~cm}^{-1}$ region.

Further inspection of the rR profiles and enhancement patterns provides insight into the orientation of the phenolate ring with respect to the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core. On the basis of overlap of the phenolate donor orbitals with the $\mathrm{Cu} \mathrm{d}_{x^{2}-y^{2}}$ acceptor orbital, a dihedral orientation of 0° or 90° of the phenolate ring relative to the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core would produce CT intensity and associated resonance enhancement of vibrations associated with only the π_{ip} or $\pi_{\mathrm{op}} \mathrm{CT}$, respectively. The two distinct enhancement patterns observed in the rR profile of \mathbf{A} in the intraligand region (Figure 4, bottom) require that the phenolate must be oriented at an intermediate angle. The vibrations associated with $\pi_{\text {op }}$ phenolate -Cu CT transition (1598 and $1280 \mathrm{~cm}^{-1}$, Table 1) are enhanced in the low energy region $\left(\sim 15400 \mathrm{~cm}^{-1}\right)$ and the three vibrations enhanced by the $\pi_{\text {ip }}$ phenolate -Cu CT transition are enhanced at higher energy ($\sim 23800 \mathrm{~cm}^{-1}$). Even though the higher energy absorption band has much more intensity than the lower energy band, the two vibrations associated with the low-energy band are more resonantly enhanced relative to the three vibrations enhanced by the high-energy band (Figure 4, bottom) as evidenced by their near-equal profile intensities

Table 2. (Top) Potential Phenolate Binding Geometries and Cu-L Modes for a mono- or bis-Phenolate Bonded bis- μ-oxo Dicopper(III) Core. (Middle) Normal Modes of Vibration for the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ Core in Different Point Groups and Experimental and Calculated rR Shifts and Isotope Effects upon ${ }^{18} \mathrm{O}_{2}$ and/or ${ }^{18} \mathrm{OPh}^{-}$Substitution. ${ }^{\text {a }}$ (Bottom) DFT Core-Distortion upon Binding of a Single Phenolate, Reflected in the DFT Structure of \mathbf{A}

${ }^{a}$ Experimental values are in parentheses, NCA-predicted values are in normal font, and DFT-predicted values are in italics. * from ref 41.
despite the variation in ε of their associated absorption bands. Given that r R enhancement is proportional to the square of absorbance intensity and that the intensity of a CT transition is an indication of orbital overlap, more enhancement in the lower energy $\pi_{\text {op }}$ phenolate -Cu CT transition indicates that the phenolate dihedral would favor π_{op} overlap. A phenolate orientation between 45° and 90° with respect to the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core is thus indicated by these resonance Raman profile data.

Geometry-Optimized Structure and Correlation to Spectros-

 copy. The spectroscopically derived model of \mathbf{A} is supported by a DFT geometry-optimized structure in which the tert-Bu substituents of the phenolate are replaced by protons (Figure 5, Table 3). The $\mathrm{Cu}-\mathrm{Cu}$ distance of $2.82 \AA$ and the $\mathrm{O}-\mathrm{O}$ distance of $2.35 \AA$ are indicative of a bis- μ-oxo dicopper(III) core. The plane of the phenolate ring is tilted 74.7° with respect to the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core, in good agreement with the orientation indicated by the rR profile data presented above. The geometric parameters of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core in the DFT-derived model follow the vibrational distortion pattern presented at the bottom of Table 2. A characteristic bis-Cu(III)-bis-oxo core exhibits equivalent$\mathrm{Cu}-\mathrm{O}$ bond lengths and $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angles, but the DFT model of \mathbf{A} is distorted in a manner consistent with the combination of the $\mathrm{B}_{2 \mathrm{u}}$ and $\mathrm{B}_{3 \mathrm{u}}$ modes of $D_{2 h}$ symmetry. The phenolatebonded Cu has $\mathrm{Cu}-\mathrm{O}_{\text {distal }}$ and $\mathrm{Cu}-\mathrm{O}_{\text {proximal }}$ bond lengths of 1.89 and $1.85 \AA$, respectively (labeled in Figure 5). The $\mathrm{Cu}_{\mathrm{B}}-\mathrm{O}_{\text {distal }}$ and $\mathrm{Cu}_{\mathrm{B}}-\mathrm{O}_{\text {proximal }}$ bond lengths are 1.81 and $1.80 \AA$, respectively. The $\mathrm{O}_{\text {proximal }}-\mathrm{Cu}_{\mathrm{a}}-\mathrm{O}_{\text {distal }}$ and $\mathrm{O}_{\text {proximal }}-\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {distal }}$ bond angles are 81.2° and 77.9°, respectively. These geometric distortions lead to the rR intensity observed in the otherwise nontotally symmetric $\mathrm{B}_{2 \mathrm{u}}$ and $\mathrm{B}_{3 \mathrm{u}}$ normal modes of a $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core (Table 2 bottom).

The electronic structure of \mathbf{A} is found to correlate well to that of a characterized bis- μ-oxo complex. ${ }^{37} \mathrm{~A}$ comparison of the fontier molecular orbitals of \mathbf{A} and the bis- μ-oxo bis- Cu (III) model (Figure 6) shows that energy differences of the oxo σ^{*} and $\mathrm{Cu} \mathrm{d}_{x^{2}-y^{2}}$ orbitals decreases by 0.2 eV leading to an ~ 1600
(37) Liang, H.; Zhang, C. X.; Henson, M. J.; Sommer, R. D.; Hatwell, K. R.; Kaderli, S.; Zuberbühler, A. D.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. D. J. Am. Chem. Soc. 2001, 124, 4170-4171.

Figure 4. rR profiles of \mathbf{A}. (Top) $\mathrm{Cu}-\mathrm{L}$ modes. Inset shows relative intensity of $589 \mathrm{~cm}^{-1}$ vibration with 413 and 650 nm excitation. (Bottom) Phenolate aromatic ring modes showing that different ring modes are enhanced in the two absorption features.

Figure 5. DFT-optimized structure of \mathbf{A} in which the tert-butyl substituents of the phenolate are replaced with hydrogen atoms. Two views are shown to visualize the orientation of the phenolate ring relative to the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core. Selected metrical parameters are given in Table 3 (vide infra).
cm^{-1} red-shift of the oxo σ^{*} to $\mathrm{Cu} \mathrm{d}_{x^{2}-y^{2}}$ ligand-to-metal CT transition, as experimentally observed in their electronic absorption spectra (Figure S2). The $\pi_{\text {ip }}$ phenolate orbital is found 0.3 eV above that of the oxo σ^{*} and corresponds to a $\pi_{\text {ip }}$ to Cu LMCT at similar energy to that of the oxo σ^{*}, which is in agreement with the rR profile data (vide supra). Additionally, the $\pi_{\text {op }}$ phenolate is found at $\sim 2.2 \mathrm{eV}$ lower in energy from the $\mathrm{Cu} \mathrm{d}_{x^{2}-y^{2}}$ LUMOs and would result in a LMCT transition $\sim 12000 \mathrm{~cm}^{-1}$ lower in energy from the oxo σ^{*} and $\pi_{\text {op }}$ LMCT transitions that is also consistent with the absorption and rR data on A. These correlations between DFT calculations and spectroscopy demonstrate that the computational model produces a reasonable representation of the geometry and electonic structure of \mathbf{A}.
Time-dependent DFT (TD-DFT) calculations of the absorption spectrum of A are compared to the experimental spectrum in Figure S3. The calculated spectra and assignments qualitatively predict transitions consistent with experiment, including phenolate π_{op} and π_{ip} to $\mathrm{Cu} \mathrm{d}_{x^{2}-y^{2}}$ ligand-to-metal CT (LMCT) transitions and oxo to Cu LMCT, but fail to do so with

Table 3. Selected Parameters from the Geometry Optimized
Structure of A

parameter	
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{Cu}_{\mathrm{b}}\right)^{a}$	2.82
$d\left(\mathrm{O}_{\text {proximal }}-\mathrm{O}_{\text {distal }}\right)^{a}$	2.35
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{OPh}\right)^{a}$	1.88
$d\left(\mathrm{O}_{\text {proximal }}-o-\mathrm{C}\right)^{a}$	2.80
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{O}_{\text {proximal }}\right)^{a}$	1.85
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{O}_{\text {distal }}\right)^{a}$	1.89
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {proximal }}\right)^{a}$	1.80
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {distal }}\right)^{a}$	1.81
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{N}_{3}\right)^{a}$	2.05
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{N}_{4}\right)^{a}$	2.41
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{N}_{1}\right)^{a}$	2.03
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{N}_{2}\right)^{a}$	2.02
$\angle\left(\mathrm{O}_{\text {proximal- }}-\mathrm{Cu}_{\mathrm{a}}-\mathrm{O}_{\text {distal }}\right)$	81.2°
$\angle\left(\mathrm{O}_{\text {proximal }}-\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {distal }}\right)$	77.9°
$\angle\left(\mathrm{N}_{1}-\mathrm{Cu}_{\mathrm{b}}-\mathrm{N}_{2}\right)$	88.3°
$\angle\left(\mathrm{N}_{3}-\mathrm{Cu}_{\mathrm{a}}-\mathrm{OPh}^{\circ}\right)$	83.9°
$\angle\left[\mathrm{OPh}^{\circ}\left(\mathrm{ring}^{\circ}\right)-\mathrm{Cu}_{2} \mathrm{O}_{2}\right]$	74.7°
$\mathrm{Cu}_{\mathrm{a}} \rho_{\text {spin }}$	0.095
$\mathrm{Cu}_{\mathrm{b}} \rho_{\text {spin }}$	-0.058

${ }^{a}$ In \AA.

Figure 6. Molecular orbital energy diagram for pertinent electronic transitions in \mathbf{A} (on right with orbital contours) relative to a bis- μ-oxo complex (on left).
appropriate intensities and energies. These discrepancies possibly stem from an underestimation of the $\mathrm{Cu}-\mathrm{O}$ bond covalency by the B3LYP hybrid-GGA functional or lack of a solvent field in the computational model, which can shift absorption bands by several thousand wavenumbers. ${ }^{38-40}$

DFT vibrational frequency calculations on model \mathbf{A} in Figure 5 , including ${ }^{18} \mathrm{O}_{2}$ - and ${ }^{18} \mathrm{OPh}$-substituted isotopomers provide predicted vibrations and associated isotopic shifts (Table 2, bottom). The core of \mathbf{A}, with C_{s} symmetry, was approximated with $D_{2 h}$ symmetry to correlate to the normal coordinate analysis

[^3]Table 4. Calculated Vibrational $\mathrm{Cu}-\mathrm{L}$ and Intraligand Modes for the Computational Model of A Including Isotope Shifts upon ${ }^{18} \mathrm{O}_{2}$ and/or ${ }^{18} \mathrm{OPh}$ Substitution Compared to rR-Observed Vibrations of \boldsymbol{A}^{a}
(Exp)
${ }^{a}$ Bold lines and arrows denote stretching and bending motions, respectively.
(NCA) of Henson et al. ${ }^{41}$ Four normal modes of the $D_{2 h} \mathrm{Cu}_{2} \mathrm{O}_{2}$ core are shown in Table 2 (middle), along with NCA-predicted vibrations and isotopic shifts. Upon inspection of the nonscaled DFT-predicted vibrational modes of \mathbf{A}, four vibrations were assigned as the $\mathrm{B}_{3 \mathrm{u}}, \mathrm{B}_{1 \mathrm{~g}}, \mathrm{~A}_{\mathrm{g}}$ and $\mathrm{B}_{2 \mathrm{u}}$ normal modes of the $D_{2 h}$ core. The A_{g} mode, predicted at $601 \mathrm{~cm}^{-1}$ (exptl $589 \mathrm{~cm}^{-1}$), exhibits calculated isotopic shifts with both ${ }^{18} \mathrm{O}$ dioxygen and phenolate as experimentally observed. The $B_{3 u}$ mode is predicted at $658 \mathrm{~cm}^{-1}$ (exptl $648 \mathrm{~cm}^{-1}$), and the $\mathrm{B}_{2 \mathrm{u}}$ mode at $517 \mathrm{~cm}^{-1}$ (exptl $560 \mathrm{~cm}^{-1}$). The $\mathrm{B}_{1 \mathrm{~g}}$ mode is not observed in the rR spectrum, but is predicted at $650 \mathrm{~cm}^{-1}$ in the DFT calculation.

These frequency calculations also allow correlation to the $\mathrm{Cu}-\mathrm{L}$ and intraligand vibrational modes in \mathbf{A}. The frequencies, isotopic shifts, and associated atomic displacements are collected in Table 4. On the basis of observed isotopic shifts, three isotope-dependent $\mathrm{Cu}-\mathrm{L}$ vibrations were calculated at 403,458 ,
(41) Henson, M. J.; Mukherjee, P.; Root, D. E.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 10332-10345.

Figure 7. Proposed structure of \mathbf{B}, a catecholate asymmetrically bound to two a.f.-coupled $\mathrm{Cu}(\mathrm{II})$ ions, bridged by a hydroxyl group. In this computational model, the tert-butyl substituents of the experimental system have been substituted with hydrogens.

Table 5. Selected Parameters from the Geometry Optimized Structure of B

parameter	
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{Cu}_{\mathrm{b}}\right)^{a}$	3.38
$d\left(\mathrm{O}_{\text {proximal }}-\mathrm{O}_{\text {distal }}\right)^{a}$	2.75
$d(\mathrm{Cu}-\mathrm{OPh})^{a}$	2.05
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{O}_{\text {proximal }}\right)^{a}$	2.10
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{O}_{\text {distal }}\right)^{a}$	1.99
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {proximal }}\right)^{a}$	2.81
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {distal }}\right)^{a}$	1.92
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{N}_{1}\right)^{a}$	2.05
$d\left(\mathrm{Cu}_{\mathrm{a}}-\mathrm{N}_{2}\right)^{a}$	2.01
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{N}_{3}\right)^{a}$	2.09
$d\left(\mathrm{Cu}_{\mathrm{b}}-\mathrm{N}_{4}\right)^{a}$	2.30
$\angle\left(\mathrm{O}_{\text {proximal }}-\mathrm{Cu}_{\mathrm{a}}-\mathrm{OPh}\right)$	79.6°
$\angle\left(\mathrm{O}_{\text {proximal }}-\mathrm{Cu}_{\mathrm{b}}-\mathrm{O}_{\text {distal }}\right)$	68.1°
$\angle\left(\mathrm{N}_{1}-\mathrm{Cu}_{\mathrm{b}}-\mathrm{N}_{2}\right)$	86.5°

${ }^{a}$ In \AA.

and $515 \mathrm{~cm}^{-1}$, corresponding to rR-observed vibrations at 386 , 485 , and $512 \mathrm{~cm}^{-1}$, respectively, which were assigned above through rR profiling as mixed $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core $/ \mathrm{Cu}-\mathrm{N}$ modes. The experimental rR trends of the isotopic shifts are reproduced in the calculated $\mathrm{Cu}-\mathrm{L}$ vibrational modes. The 386 and $485 \mathrm{~cm}^{-1}$ vibrations, which contain $\mathrm{Cu}-$ phenolate stretching, are expected to show more isotopic dependence on ${ }^{18} \mathrm{OPh}$ substitution than on ${ }^{18} \mathrm{O}_{2}$ labeling; this behavior is observed in both the rR experiments and in the vibrational frequencies of the computational model. Likewise, the aromatic ring modes are also computationally reproduced (Table 4, bottom), showing only one ${ }^{18} \mathrm{O}$ isotope-dependent vibration at $1280 \mathrm{~cm}^{-1}$, indicative of the only phenolate normal mode that incorporates the $\mathrm{C}_{1}-\mathrm{O}$ stretch. Experimentally, this mode shows no ${ }^{18} \mathrm{O}_{2}$ dependence, but does exhibit a $-20 \mathrm{~cm}^{-1}$ shift upon ${ }^{18} \mathrm{OPh}^{-}$substitution. In the calculated model, a large ${ }^{18} \mathrm{OPh}$ dependence $\left(-11 \mathrm{~cm}^{-1}\right)$ is predicted. The energies of the other four rR-observed aromatic ring modes are reproduced approximately by the DFT calculations to within $50 \mathrm{~cm}^{-1}$ of the experimental value and none are predicted or observed to exhibit an isotope dependence.

Intermediate B. A decays via a first-order process at 153 K $\left(t_{1 / 2}=38 \mathrm{~min}\right)$ to \mathbf{B} (Scheme 2), which has a nearly identical absorption spectrum as the reaction of $\mathbf{P}^{\text {DBED }}$ with 2,4-di-tertbutylphenolate at 193 K without the appearance of A, suggesting that the conversion of \mathbf{A} to \mathbf{B} is the rate-determining step in the overall reaction. ${ }^{15} \mathbf{B}$ is an EPR-silent species that exhibits no appreciable absorption feature in the visible region, preclud-

Figure 8. Solvent-subtracted rR spectrum (high-energy region) of \mathbf{C} with 530 nm excitation in THF/2-MeTHF at 77 K . Inset: rR spectrum of \mathbf{C} with ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ substituted phenolate and O_{2} in THF/2-MeTHF at 77 K .
ing r R experiments. As \mathbf{A} decays directly to \mathbf{B}, an isoelectronic isomer is suggested, such as a bis- $\mathrm{Cu}(\mathrm{II})-\mu_{2}$-hydroxy dimer with an asymmetrically ligated catecholate as is obtained from the DFT calculations presented below (Figure 7, Table 5). The lack of intense LMCT bands in \mathbf{B} is consistent with other catecholatedicopper(II) complexes, ${ }^{42,43}$ which exhibit only weak absorption bands ($\varepsilon<1000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) in the visible region.
The molecular orbitals obtained from the DFT model of \mathbf{B} (Figure S4) show the occupied phenolate donor orbitals at higher energy relative to the highest energy occupied hydroxide donor orbital. The relative ordering of these orbitals particularly in the out-of-plane symmetric catecholate HOMO would lead to lower energy phenolate to $\mathrm{Cu}(\mathrm{II}) \mathrm{CT}$ bands; however, these are predicted to have little to no intensity due to the low catecholate character in the acceptor orbital (β LUMO in Figure S4 has no out-of-plane catecholate character), consistent with the absorption spectrum in Figure 1. TD-DFT calculations, which qualitatively correlate to the experimentally observed CT bands in A (vide supra) and \mathbf{C} (vide infra), do not predict any intense visible transition for this model of \mathbf{B}. This reflects the lack of orbital overlap between the catecholate and $\mathrm{Cu}(\mathrm{II})$ ions (see the MO depictions of \mathbf{B} in Figure S5). The experimental absorption spectrum of \mathbf{B} (Figure 1) is overlaid with the TD-DFT predicted transitions and simulated absorption spectrum in Figure S6. There are two transitions with nonzero oscillator strength in the near-IR region predicted by the calculations. The transition at $9100 \mathrm{~cm}^{-1}$ (oscillator strength $=0.0336 ; 168 \rightarrow 169 \alpha$ and β) is attributed to a symmetric catecholate $\pi_{\text {op }}$ to Cu CT . A second transition at $12800 \mathrm{~cm}^{-1}$ (oscillator strength $=0.0131$; $167 \rightarrow 169 \alpha$) is due to an antisymmetric catecholate π_{ip} to Cu CT. No other predicted transition has an oscillator strength greater than 0.01 .

Intermediate C. Vibrational Data. The addition of an equimolar amount of protons to the phenolate added to create \mathbf{A} converts \mathbf{B} to \mathbf{C}, a purple species. The proton addition reproduces the stoichiometry of the tyrosinase mechanism. The geometric and electronic structures of \mathbf{C} were evaluated in a manner similar to \mathbf{A}, using rR vibrations, profiles, and DFT calculations. The high-energy intraligand region of the rR spectra of \mathbf{C}, collected using $530 \mathrm{~nm}\left(\sim 18000 \mathrm{~cm}^{-1}\right)$ excitation (see

[^4]

Figure 9. rR spectra of \mathbf{C} with 530 nm excitation at 77 K . (A) ${ }^{16} \mathrm{O}-$ and ${ }^{18} \mathrm{O}$-substituted phenolate and O_{2} in THF/2-MeTHF. (B) Solvent-subtracted spectra of \mathbf{C} with isotope shifts labeled.

Figure 1, spectrum C), including isotopic shifts upon formation with ${ }^{18} \mathrm{OPh}$ and ${ }^{18} \mathrm{O}_{2}$ is given in Figure 8. Two vibrations are isotopically sensitive at 1375 and $1435 \mathrm{~cm}^{-1}$, with each band more tightly coupled to ${ }^{18} \mathrm{OPh}$ substitution than to ${ }^{18} \mathrm{O}_{2}$ substitution. These features are consistent with $\mathrm{C}-\mathrm{O} /$ ring mixed modes observed for metal-bonded semiquinone species ${ }^{44,45}$ and allow assignment of \mathbf{C} as a $\mathrm{Cu}(\mathrm{II})$-semiquinone complex. The lowenergy region of the rR spectrum (Figure 9), reveals six vibrations with isotope dependence: 436, 508, 557, 577, 676, and $748 \mathrm{~cm}^{-1}$. Each vibration couples with ${ }^{18} \mathrm{O}$ labeling of both phenolate and dioxygen except the $436 \mathrm{~cm}^{-1}$ vibration, which does not shift upon ${ }^{18} \mathrm{O}_{2}$ substitution. The strong coupling between the two isotope perturbations indicates that the oxygen atom inserted into the phenolate to form the semiquinone product derives from O_{2}, and thus from the oxo bridge of \mathbf{A}.
rR Profiles. The $\nu_{\mathrm{C}-\mathrm{O}}$ and dominant $\mathrm{Cu}-\mathrm{L}$ modes of \mathbf{C} were profiled across the $\sim 18000 \mathrm{~cm}^{-1}$ absorption band. The $\nu_{\mathrm{C}-\mathrm{O}}$ modes are enhanced similarly across this broad feature (Figure 10, top). The non-Gaussian band shape of the profile indicates the presence of at least two electronic transitions. The $\mathrm{Cu}-\mathrm{L}$ modes also clearly show evidence for two transitions, one at $\sim 19000 \mathrm{~cm}^{-1}$ and another at $\sim 16500 \mathrm{~cm}^{-1}$, as two distinct $\mathrm{Cu}-\mathrm{L}$ enhancement patterns are observed (Figure 10, bottom). The 557 and $508 \mathrm{~cm}^{-1}$ vibrations, which have nearly equal phenolate and dioxygen isotope dependence, are enhanced more strongly in the $\sim 19000 \mathrm{~cm}^{-1}$ region while the $577 \mathrm{~cm}^{-1}$ mode is (mostly ${ }^{18} \mathrm{O}_{2}$ sensitive) enhanced more strongly near ~ 16500 cm^{-1}.

Geometry-Optimized Structure and Correlation to Spectroscopy. The reaction coordinate-predicted structure of \mathbf{C} (vide infra) is given in Figure 11 (Table 6). In order to elucidate the electronic structure of C, DFT calculations were performed on a model of \mathbf{C} with a semiquinone (SQ) bound to $\mathrm{Cu}(\mathrm{II})$. The DBED ligand is bonded to $\mathrm{Cu}(\mathrm{II})$ with the tert- Bu groups on the amines oriented trans to one another. The plane of the semiquinone ring is rotated 32° relative to the $\mathrm{Cu}-\mathrm{N}$ plane. Inspection of the molecular orbitals of this structure (Figure

[^5]

Figure 10. rR profiles of \mathbf{C}. (Top) $v_{\mathrm{C}-\mathrm{o}}$ modes. (Bottom) Selected $\mathrm{Cu}-\mathrm{L}$ modes with $\pm 10 \%$ error bars.

Figure 11. DFT-optimized structure of a minimal model of C. Note the torsional angle of the semiquinone relative to the CuN_{2} plane. In this computational model, the tert-butyl substituents of the experimental system have been substituted with hydrogens.

Table 6. Selected Parameters from the Geometry-Optimized Structure of C

parameter	
$d\left(\mathrm{Cu}-\mathrm{O}_{1}\right)^{a}$	1.97
$d\left(\mathrm{Cu}-\mathrm{O}_{2}\right)^{a}$	1.97
$d\left(\mathrm{Cu}-\mathrm{N}_{1}\right)^{a}$	2.02
$d\left(\mathrm{Cu}-\mathrm{N}_{2}\right)^{a}$	2.02
$\angle\left(\mathrm{O}_{1}-\mathrm{Cu}-\mathrm{O}_{2}\right)$	84.0°
$\angle\left(\mathrm{N}_{1}-\mathrm{Cu}-\mathrm{N}_{2}\right)$	90.0°

[^6]12) show a $\mathrm{Cu}(\mathrm{II})$-based α hole and a semiquinone-based β hole (92α and 92β), corresponding to antiferromagnetic (a.f.) coupling between the metal ion and the semiquinone. The semiquinone species is further exemplified by the β LUMO (92 β) corresponding to the α HOMO (91 α). The 32° dihedral angle, $\phi(\mathrm{N}-\mathrm{Cu}-\mathrm{O}-\mathrm{C})$, observed in the geometry-optimized structure is sufficiently large to allow overlap between the orbitals of Cu

Figure 12. Selected α and β molecular orbitals of \mathbf{C} revealing it as an a.f.-coupled $\mathrm{Cu}(\mathrm{II})$ semiquinone complex and showing orbitals involved in TD-DFT-predicted CT transitions. Shown next to the Cu ion and ring are the MO coefficients for each orbital. The number next to the ring represents the total contribution from all 12 atoms in the ring $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$.
and the ring, producing the a.f. ground-state with the brokensymmetry singlet energy $1.1 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the triplet state.

DFT frequency calculations yield two $v_{\mathrm{C}-\mathrm{O}}$ normal modes, two $v_{\mathrm{Cu}-\mathrm{O}}$ modes, and two mixed modes, as shown in Table 4 along with experimental and calculated isotope shifts. The four experimentally observed $\mathrm{Cu}-\mathrm{L}$ vibrations at $748,577,557$, and $508 \mathrm{~cm}^{-1}$ are assigned from the calculations as two $v_{\mathrm{Cu}-\mathrm{O}}$ and two chelate $/ \mathrm{Cu}-\mathrm{N}$ mixed modes, respectively. Chelate modes involve in-plane distortion in the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ bond angle. The 748 and $577 \mathrm{~cm}^{-1}$ modes are nearly pure $\mathrm{Cu}-\mathrm{O}$ bond stretching modes with additional mixing of ring motion, while the 557 and $508 \mathrm{~cm}^{-1}$ vibrations are mixed chelate and $\mathrm{Cu}-\mathrm{N}$ in character, as shown in the normal mode displacements in Table 4. One chelate mode is present generally for a five-membered ring formed from a chelating aromatic ligand bonded to a

Table 7. Normal Modes and Calculated Frequency Shifts (in cm^{-1}) of a Model of \mathbf{C} with Isotopic Shifts upon ${ }^{18} \mathrm{O}_{2}$ and/or ${ }^{18} \mathrm{OPh}^{-}$ Substitution ${ }^{\text {a }}$

Abstract

${ }^{a}$ Experimentally observed values are in parentheses. Arrows indicate in-plane displacement vectors, except for H in the top two modes which indicate antisymmetric out-of-plane H bending. Superscript a in the table is the calculated value for $\mathrm{R}=\mathrm{H}$; the superscript b is the calculated value for $\mathrm{R}=$ tert-butyl.

metal. ${ }^{46}$ The two modes correspond to the two five-membered chelate rings in \mathbf{C} : one incorporating Cu and the semiquinone, and the other the Cu and the diamine ligand. The 508 and 557 cm^{-1} modes (calculated at 500 and $521 \mathrm{~cm}^{-1}$, respectively) are both symmetric due to the $D_{2 d}$ distortion of the complex from a square planar geometry, allowing for rR enhancement. This is reflected in the intensity pattern seen in the rR spectrum (Figure 9) as the $557 \mathrm{~cm}^{-1}$ mode is much more intense than the $508 \mathrm{~cm}^{-1}$ mode. The $508 \mathrm{~cm}^{-1}$ mode is assigned as a chelate mode mixed with $v_{\mathrm{Cu}-\mathrm{N}}$ and out-of-plane ring bending, and the $557 \mathrm{~cm}^{-1}$ mode is the main chelate mode, incorporating a large $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angle bending motion that mixes with $\mathrm{Cu}-\mathrm{N}$ bond stretching. rR isotope data reveal that both O_{2} and phenolate substitution significantly affect these mixed chelate modes, as calculated. Two $v_{\mathrm{Cu}-\mathrm{O}}$ modes are observed at 577 and $748 \mathrm{~cm}^{-1}$ (calculated at 607 and $758 \mathrm{~cm}^{-1}$, respectively) and both mix with semiquinone modes. The $577 \mathrm{~cm}^{-1}$ peak derives most of its intensity from $v_{\mathrm{Cu}-\mathrm{O}}$, with mixing of a symmetric ring breathing mode. The $758 \mathrm{~cm}^{-1}$ mode couples with $v_{\mathrm{C}-\mathrm{C}}$ of the semiquinone. Metal-oxygen stretches are known to mix with such intraligand $\mathrm{C}-\mathrm{C}$ stretches. ${ }^{45}$ The two modes at the bottom of Table 7 are different ring stretching modes that couple with $\mathrm{C}-\mathrm{O}$ bond stretches. The observed vibrations at 1435 and 1375 cm^{-1}, calculated at 1487 and $1393 \mathrm{~cm}^{-1}$, respectively, are consistent with $\mathrm{C}-\mathrm{O}$ stretching modes in other metal-semiquinone complexes. ${ }^{44}$ The $\mathrm{C}-\mathrm{C}$ stretches involved in each of the modes are shown in Table 7.
(46) Gordon, D. J.; Fenske, R. F. Inorg. Chem. 1982, 8, 2907-2915.

The magnitudes of the experimental phenolate and O_{2} isotope shifts are greater than the calculated values (i.e., the experimental modes are less mixed), and the calculations show equal isotope dependence on both oxygen atoms whereas experimentally the two oxygens contribute unequally in each of the five modes. The calculated structure of \mathbf{C} shows that the two $\mathrm{Cu}-\mathrm{O}$ bonds have the same length and the two $\mathrm{C}-\mathrm{O}$ bonds are also equal, which results in the equivalent calculated isotope effects. The unequal isotope shifts in the rR spectra of \mathbf{C} (see Table 7), indicate that the experimental structure of \mathbf{C} has inequivalent $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ bond lengths. The differences between experimental and calculated isotope dependencies may stem from the use of an unsubstituted ring in the computational model while the experimental structure is a 3,5-di-tert-butylsemiquinone, which would impose steric effects on the real system not present in the computational model.

Correlation of the band assignments to the rR profile data further characterizes the nature of the associated electronic excited states of \mathbf{C}. The two modes assigned as having mixed chelate $/ \mathrm{Cu}-\mathrm{N}$ character are more enhanced in the $\sim 19000 \mathrm{~cm}^{-1}$ region than in the $\sim 16500 \mathrm{~cm}^{-1}$ region (557 and $508 \mathrm{~cm}^{-1}$, Figure 10, bottom), thus these modes distort more in the excitedstate associated with the higher energy electronic transition. The $577 \mathrm{~cm}^{-1} v_{\text {Cu-O }}$ exhibits the opposite behavior, with greater $v_{\mathrm{Cu}-\mathrm{O}}$ distortion associated with the lower energy electronic transition. The near-equivalent intensity enhancement of the two $v_{\mathrm{C}-\mathrm{O}}$ modes (1375 and $1435 \mathrm{~cm}^{-1}$; Figure 10, top) indicates that significant excited-state distortion in the $\mathrm{C}-\mathrm{O}$ bonds occurs in both electronic transitions.

Figure 13. Simulated absorption spectrum of \mathbf{C} (black) overlaid with the experimental absorption spectrum of \mathbf{C} (purple) in arbitrary absorption units. The boxes indicated TD-DFT-calculated transitions. Oscillator strengths are on the same scale here as in the TD-DFT plot of \mathbf{A} in Figure S3.

TD-DFT calculations help evaluate the nature of the electronic transitions in \mathbf{C} at ~ 19000 and $\sim 16500 \mathrm{~cm}^{-1}$. An overlay of the experimental and calculated absorption spectrum along with the corresponding TD-DFT-predicted transitions (Figure 13) show reasonable agreement. The simulated spectrum is dominated by three moderately strong electronic transitions in the low-energy visible and NIR regions. The molecular orbitals involved in these electronic transitions are included in Figure 12. The first low-energy transition with nonzero oscillator strength is at $9200 \mathrm{~cm}^{-1}$ (Figure 13) and is strongly associated with semiquinone π_{op} to Cu LMCT (oscillator strength $=$ $0.0183 ; 91 \rightarrow 92 \alpha$). The next intense transition at $16600 \mathrm{~cm}^{-1}$, has many contributions: $88 \rightarrow 92 \alpha$, antisymmetric $\pi_{\text {ip }}$ SQ to Cu LMCT; $80 \rightarrow 92 \alpha, \pi_{\text {ip }}$ antisymmetric SQ to Cu LMCT; 91 $\rightarrow 92 \alpha, \pi_{\text {op }}$ SQ to Cu CT; $90 \rightarrow 92 \beta, \pi_{\text {ip }}$ symmetric SQ to $\pi_{\text {op }}$ SQ intraligand transition with MLCT character; and $85 \rightarrow 92$ $\alpha, \pi_{\mathrm{op}} \mathrm{SQ}$ to Cu LMCT. The dominant SQ to Cu CT leads to an excited-state distortion mostly along the $\mathrm{Cu}-\mathrm{O}$ bonds, which resonance-enhances in the $\mathrm{Cu}-\mathrm{O}$ stretch in the $\sim 16600 \mathrm{~cm}^{-1}$ region (Figure 10). These transitions also agree with the mixing of modes observed in the DFT frequency calculations in that the $\mathrm{Cu}-\mathrm{O}$ stretches are mixed with both in-plane and out-ofplane semiquinone ring motion. The third strong predicted transition at $18600 \mathrm{~cm}^{-1}$ (Figure 13), with an oscillator strength of 0.0205 , has two contributions: $90 \rightarrow 92 \beta, \pi_{\mathrm{ip}}$ symmetric SQ to π_{op} SQ intraligand transition with MLCT character; 88 $\rightarrow 92 \beta$, $\pi_{\text {ip }}$ antisymmetric SQ to $\pi_{\text {op }}$ SQ with some MLCT character. This transition involves mainly intraligand excitedstate distortion that leads to resonance enhancement of the chelate modes in the $\sim 18600 \mathrm{~cm}^{-1}$ region, as observed in the rR profiles (Figure 10, bottom). The $90 \rightarrow 92 \beta$ excitation results in moderate excited-state distortion and resonance enhancement of the SQ oxygen σ-bonding to π_{op}-bonding. The $88 \rightarrow 92 \beta$ excitation results in significant excited-state distortion and resonance enhancement of the SQ oxygen σ^{*} to π_{op}-bonding. The $90 \rightarrow 92 \beta$ excitation, which contributes to the 16600 and $18600 \mathrm{~cm}^{-1}$ TD-DFT transitions, also contains MLCT character, as evidenced by the MO coefficients of Cu (II) mostly in the donor orbital. 90β contains $24 \% \mathrm{Cu}($ II $)$, while 92β, the β LUMO, contains less than $1 \% \mathrm{Cu}(\mathrm{II})$ character and 97% SQ character. Likewise, the predominantly intraligand $88 \rightarrow 92 \beta$ transition exhibits $21 \% \mathrm{Cu}(\mathrm{II})$ in the donor orbital and $1 \% \mathrm{Cu}$ in the acceptor orbital and contributes to the high energy TD-DFT-predicted transition. The MLCT character of these excita-

Figure 14. α and β molecular orbitals for the DFT-optimized structure of A. Shown for reference are normal phenolate orbitals. In both α and β manifolds, both $\mathrm{Cu} \mathrm{d} x^{2}-y^{2}$ are unoccupied, confirming the ions as $\mathrm{Cu}(\mathrm{III})$ and the ring HOMO is a phenolate HOMO. The α and β ring-based HOMO align with the oxo-based α and β LUMO in a configuration priming the ortho-C for attack by the proximal O .
tions mixed with the intraligand chelate of the high energy absorption band results in enhancement of $\mathrm{Cu}-\mathrm{O}$ stretches in that region as well.
II. Computational Studies of the Reaction Coordinate. Geometric and Electronic Structure of A. The rR data of A are most consistent with a monophenolate bis- μ-oxo dicopper(III) complex, and the calculated electronic and geometric structures of A correlate to the observed electronic absorption features including the oxo- Cu LMCT at $\sim 24000 \mathrm{~cm}^{-1}$ and the phenolate $-\mathrm{Cu}($ III $)$ LMCT at $\sim 16000 \mathrm{~cm}^{-1}$. The computational model of \mathbf{A} has an unsubstituted phenolate bonded to the bisoxo core supported by the DBED ligand (Figure 5). The distance between the $\mathrm{O}_{\text {proximal }}$ bridge and the nearest ortho-carbon atom of the phenolate was constrained at $2.80 \AA$ during geometry optimization; Table 3 gives some parameters of the optimized structure. Within the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core, $\mathrm{Cu}-\mathrm{O}$ bond lengths vary between 1.80 and $1.89 \AA$, as given above. The core distorts from a symmetric bis- μ-oxo geometry as shown at the bottom of Table 2. The $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{O}-\mathrm{O}$ distances, at 2.82 and 2.35 \AA, respectively, are reminiscent of a bis- $\mathrm{Cu}($ III $)$-bis-oxo core. Cu_{B} is bonded to DBED with $\mathrm{Cu}-\mathrm{N}$ bond lengths of 2.02 and $2.03 \AA$, while the phenolate-bonded Cu_{A} exhibits unequal $\mathrm{Cu}-\mathrm{N}$ bond lengths to its diamine ligand. The $\mathrm{Cu}_{\mathrm{A}}-\mathrm{N}$ bond distance in the equatorial plane of the Cu is $2.05 \AA$, and the other $\mathrm{Cu}_{\mathrm{A}}-\mathrm{N}$ bond is in an axial position at $2.41 \AA$. The phenolate oxygen to Cu_{A} distance is $1.88 \AA$.

Molecular orbitals of \mathbf{A} (Figure 14) clearly show the presence of two holes on each Cu center (α and β LUMO and LUMO+1) verifying a $\mathrm{Cu}($ III $)$ designation. The spin densities are also approximately zero, in line with $\mathrm{d}^{8} \mathrm{Cu}(\mathrm{III})$ centers. The occupied orbitals on the aromatic ring confirmed it as a phenolate. By examination of the two lowest unoccupied α and β orbitals, the electronic structure of the bis-oxo $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core has oxo σ^{*} character mixed into the LUMO and the oxo $\pi^{*}{ }_{\sigma}$ character mixed into the LUMO+1. Of particular interest are the spatial orientations and compositions of the HOMO and LUMO (same in α and β). The HOMO is a pure phenolate $\pi^{*}{ }_{\mathrm{op}}$ orbital, while the LUMO is $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core-based antibonding orbital with

Figure 15. Potential energy surface of the gas-phase reaction coordinate of phenolate with the DBED dicopper(II) complex made by gradually reducing the ortho- $\mathrm{C}-\mathrm{O}_{\text {proximal }}$ distance.
contributions from both $\mathrm{Cu} \mathrm{d}_{x^{2}-y^{2}}$ and oxo σ^{*} orbitals. If the plane of the aromatic ring is tilted to 75° with respect to the plane of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core, as computationally predicted, the $\pi^{*}{ }_{\text {op }}$ occupied phenolate orbital (HOMO) is well positioned for electrophilic attack by the neighboring σ^{*} orbital of the $\mathrm{O}_{\text {proximal }}$ (LUMO) as seen in Figure 14. ${ }^{15}$
Reaction Coordinate of $\mathbf{C}-\mathbf{O}$ Bond Formation. A seven-point potential energy surface (PES) tracing the contraction of the $\mathrm{C}-\mathrm{O}$ distance in the model of \mathbf{A} from 2.80 to $1.30 \AA$ is presented in Figure 15 (right to left). The highest-energy state along the coordinate is identified at a $\mathrm{C}-\mathrm{O}$ distance of $2.10 \AA$. Further constriction of the $\mathrm{C}-\mathrm{O}$ distance results in appreciable lowering of the electronic energy of the system. The calculated energy barrier of $4.5 \mathrm{kcal} / \mathrm{mol}$ is within DFT accuracy of the experimental activation energy of $10.3 \mathrm{kcal} / \mathrm{mol} .{ }^{15}$ The difference may also be attributed to solvent effects or the truncation of the computational model compared to the experimental system since our model contains an unsubstituted phenolate ligand.

The highest-energy state shows distortion of the ortho-C from a planar sp^{2}-like carbon to a tetrahedral-like sp^{3} carbon, and a modest shortening of the ortho $-\mathrm{C}-\mathrm{H}$ bond, corresponding to a slight increase in the stretching frequency of the bond, from 3185 cm^{-1} in A to $3205 \mathrm{~cm}^{-1}$. These data directly correlate to the experimentally observed inverse secondary KIE of the reaction. Application of the Streitwieser approximation ${ }^{47}$ (eq 1) to the ortho-$\mathrm{C}-\mathrm{H}$ bond in the highest energy structure predicts an inverse 2° KIE of $0.95(\pm 0.18)$, which is similar to the observed inverse 2° KIE of $0.83(\pm 0.09)$. Since the $\mathrm{C}-\mathrm{H}$ bond is strongest at the highest-energy calculated state, as in the experimental system, the calculations show that the rate-limiting step of the reaction is the distortion of the phenolate ring.

$$
\begin{equation*}
\frac{k_{\mathrm{D}}}{k_{\mathrm{H}}}=\exp \left\{-\frac{h c}{2 k T}\left(\sum\left(\bar{v}_{\mathrm{D}}^{\prime}-\bar{v}_{\mathrm{H}}^{\prime}\right)-\sum\left(\bar{v}_{\mathrm{D}}-\bar{v}_{\mathrm{H}}\right)\right)\right\} \tag{1}
\end{equation*}
$$

In this simulation, no provision for the ortho $-\mathrm{C}-\mathrm{H}$ bond cleavage is allowed; therefore the ortho- C tends to a tetrahedral
(47) Streitwieser, A., Jr.; Jagow, R. H.; Fahey, R. C.; Suzuki, S. J. Am. Chem. Soc. 1958, 80, 2326-2332.

Table 8. MBO for the ortho-C-O ${ }_{\text {proximal }}$ Bond and Mulliken Charge on the ortho-H as the Distance between the Aromatic Ring and $\mathrm{O}_{\text {proximal }}$ Is Varied

ortho-C- $\mathrm{O}_{\text {proximal }}(\AA \AA)$	MBO	charge $o-\mathrm{H}^{+}$
2.8	0.297	0.245
2.3	0.346	0.273
2.1	0.398	0.287
1.9	0.515	0.309
1.7	0.841	0.316
1.5	1.148	0.346
1.3	1.104	0.321

geometry as the $\mathrm{C}-\mathrm{O}$ distance is shortened. Several diagnostics were calculated to evaluate whether the $\mathrm{C}-\mathrm{O}$ bond completely forms at short $\mathrm{C}-\mathrm{O}$ distances while the ortho $-\mathrm{C}-\mathrm{H}$ bond is still intact. In the next section, an accessible proton acceptor is simulated in the reaction coordinate, and it is shown that $\mathrm{C}-\mathrm{H}$ bond dissociation is a necessary precursor to $\mathrm{C}-\mathrm{O}$ bond formation.

The Mayer's Bond Order (MBO) for the $\mathrm{C}-\mathrm{O}$ interaction increases with decreasing distance between the atomic centers (Table 8), and in the structure with a $2.10 \AA \mathrm{C}-\mathrm{O}$ distance indicates that the $\mathrm{C}-\mathrm{O}$ bond is only partially formed. The MBO of greater than 1.0 for short $\mathrm{C}-\mathrm{O}$ distances is misleading, as the MBO of a normal catecholate $\mathrm{C}-\mathrm{O}$ bond is ~ 1.5. Furthermore, the natural bonding orbital (NBO) overlap and the Wiberg Bond Index (Table S2) for the computational model are lower than for normal catecholate. Taken together, these data suggest that the $\mathrm{C}-\mathrm{O}$ bond is not fully formed while the ortho $-\mathrm{C}-\mathrm{H}$ bond exists. As the $\mathrm{C}-\mathrm{O}$ distance decreases, the ortho- H becomes more proton-like, indicated by the increase in its Mulliken charge (Table 8).

Investigation of the MOs along the reaction coordinate (Figure S7) provides valuable insight into the electronic structural changes occurring during this process. Inspection of the MOs and a comparison of the broken-symmetry and restricted singlet energies of the 2.80 (Intermediate A) and $2.30 \AA$ structures reveals that the complex exists as a phenolate bonded to a bis-μ-oxo dicopper(III) core at these points. Structures with ortho-$\mathrm{C}-\mathrm{O}_{\text {proximal }}$ distances of $2.30-2.00 \AA$, including the TS of the reaction, exhibit several electronic changes relative to the starting
complex. First, as the ortho-C distorts from a planar configuration, the ring-based HOMO resembles that of a distorted phenolate, and the bis-oxo character of the unoccupied orbitals becomes more obscure, i.e., the $\pi^{*}{ }_{\sigma}$ and σ^{*} oxo character lessens and the Cu centers exhibit polarization in the α and β LUMO +1 , $2.10 \AA$ structure. As the $\mathrm{C}-\mathrm{O}$ distance is reduced below $2.0 \AA$, the MO coefficients of the aromatic ligand and the two Cu ions reveal increasing contributions from the aromatic ring into both the α and β LUMO (i.e., two holes form on the ring in the 1.50 \AA structures: MO 160α and 780β). The coefficients of the phenolate-based α and β HOMO decrease ($57 \% \alpha$ to $34 \% \alpha$ and $60 \% \beta$ to $27 \% \beta$ proceeding from 2.10 to $1.90 \AA \mathrm{C}-\mathrm{O}$). This indicates that soon after the transition state, two electrons simultaneously transfer from the distorted phenolate to the two $\mathrm{Cu}(\mathrm{III})$ ions, reducing each to $\mathrm{Cu}(\mathrm{II})$ and creating a doubly oxidized distorted phenolate ligand. The presence of two a.f.coupled $\mathrm{Cu}(\mathrm{II})$ ions is confirmed by the presence of one hole on each Cu ion (Figure S7: $1.90 \AA$ structure, 161α and 780 β; $1.50 \AA$ structure, 161α and $779 \beta)$. In the $1.30 \AA$ structure, the HOMO of the aromatic ring has unequal contributions from the two $\mathrm{C}-\mathrm{O}$ interactions, resulting in a distortion of the symmetric $\pi_{\text {op }}$ ring-based orbital (Figure S7, $1.30 \AA \mathrm{C}-\mathrm{O}$, HOMO α and β). This can be visually confirmed by examining the orientation of the $\mathrm{O}_{\text {phenolate }}$ and $\mathrm{O}_{\text {proximal }}$ orbitals relative to the occupied $\pi_{\text {op }}$ catecholate orbital. Despite the fact that this structure has a constrained $\mathrm{C}-\mathrm{O}$ distance of $1.30 \AA$ (shorter than the typical catecholate $\mathrm{C}-\mathrm{O}$ bond length of $\sim 1.4 \AA$), the MOs indicate that the $\mathrm{C}-\mathrm{O}$ bond is not fully formed.
Removing the ortho-H as a proton in a second simulation results in the formation of a full $\mathrm{C}-\mathrm{O}$ bond, confirmed by molecular orbital and NBO analyses (Table S2). To illustrate the effect of the ortho-proton on $\mathrm{C}-\mathrm{O}$ bond formation, the MO diagrams of two $1.50 \AA$ structures are shown in Figure 16; one with an intact ortho- $\mathrm{C}-\mathrm{H}$ bond (top) and one with a cleaved ortho- $\mathrm{C}-\mathrm{H}$ bond (bottom). The nature of the ring-based α and β HOMO and HOMO- 1 of the structure with the cleaved ortho-$\mathrm{C}-\mathrm{H}$ bond are more catecholate-like and the α and β LUMO show the a.f.-coupling of the $\mathrm{Cu}(\mathrm{II})$ ions (Figure 16, bottom). The a.f. coupling can also be seen in the model with the intact ortho- $\mathrm{C}-\mathrm{H}$ bond, but the HOMO and HOMO-1 are not catecholate-like and there are two holes on the ring in the α LUMO and β LUMO+1 (Figure 16, top). This analysis reveals that the formation of the catecholate species is facilitated greatly by the cleavage of the ortho $-\mathrm{C}-\mathrm{H}$ bond. After $\mathrm{C}-\mathrm{H}$ bond cleavage, the $\mathrm{C}-\mathrm{O}$ bond forms fully as two electrons from $\mathrm{O}_{\text {proximal }}$ fill the two holes on the doubly oxidized distorted phenolate. Notice that the α and β HOMO of the ortho $-\mathrm{C}-\mathrm{H}$ structure (top) are not ring-based, but when the ortho-proton is gone, the same HOMOs are predominantly catecholate-like in nature. MOs 160α and 780β in Figure 16 (top) show the two holes on the oxidized phenolate. These two holes are filled by electrons from $\mathrm{O}_{\text {proximal }}$ upon $\mathrm{C}-\mathrm{O}$ bond formation at the bottom of Figure 16.
Experimentally, heterolytic $\mathrm{C}-\mathrm{H}$ bond cleavage requires a driving force, and the effect of a proton acceptor is evaluated in the next section. Also in the next section, the electronic transfers that allow catecholate formation are examined and the same catecholate-dicopper(II) species is generated after H^{+} transfer from ortho $-\mathrm{C}-\mathrm{H}$ (through an intermediary base) to the $\mathrm{O}_{\text {distal }}$ of the core.
Two-Dimensional PES of $\mathbf{C}-\mathbf{O}$ Bond Formation and $\mathbf{C}-\mathbf{H}$ Cleavage: Dependence on the \mathbf{H}^{+}Acceptor. A logical destination of the ortho- $-\mathrm{H}^{+}$is the $\mathrm{O}_{\text {distal }}$ of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core. Yet, the $>4.0 \AA$

Figure 16. Molecular orbitals of the $1.50 \AA \mathrm{C}-\mathrm{O}$ distance systems are compared for a system with an intact ortho- $\mathrm{C}-\mathrm{H}$ bond and that of a system with a cleaved ortho- $\mathrm{C}-\mathrm{H}$ bond. The appearance of the catecholate-like orbitals in the two highest occupied orbitals of the system on the bottom indicates that $\mathrm{C}-\mathrm{O}$ bond formation occurs if the ortho $-\mathrm{C}-\mathrm{H}$ bond has dissociated.
distance between the ortho- H and the $\mathrm{O}_{\text {distal }}$, combined with the projection of the ortho- $\mathrm{C}-\mathrm{H}$ bond vector will not allow a direct proton transfer. The large steric demands of the six tert-butyl substituents in the bridged copper dimers dramatically restrict the rotational rearrangement of the aromatic ligand to facilitate this proton transfer. Representing the atoms with van der Waals radii further illustrates this point (Figure S8).

The dependence on the proton acceptor was modeled with a two-dimensional potential energy surface. The cleavage of the ortho- $\mathrm{C}-\mathrm{H}$ bond is necessary for full $\mathrm{C}-\mathrm{O}$ bond formation and direct proton transfer to the $\mathrm{O}_{\text {distal }}$ is unlikely. An exogenous base near the ortho-H site would facilitate $\mathrm{C}-\mathrm{H}$ bond cleavage and eventual protonation of $\mathrm{O}_{\text {distal }}$. A methylamine molecule was added to the seven intermediate structures within the initial reaction coordinate (Figure 15) with the lone pair of the nitrogen pointing toward the ortho-H at a distance of $3.10 \AA$ away from the ortho-hydrogen of the bound phenolate. For each of these seven structures (with $\mathrm{C}-\mathrm{O}$ bond distances of $2.8,2.3,2.1,1.9$, $1.7,1.5$, and $1.3 \AA$) the ortho- -H bond length was fixed at different distances ($1.08,1.10,1.15,1.58$, and $2.07 \AA$) pointing toward the nitrogen of the methylamine with the proton moving along the $\mathrm{C}-\mathrm{N}_{\text {methylamine }}$ vector. There are a number of candidate proton acceptors in the experimental system, such as the unbound DBED ligand amine or excess phenolate. However, this has yet to be identified by experiment.

The two-dimensional plot of the electronic energy of the system as a function of both $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ distance is presented in Figure 17. From the back left portion of the surface with a $\mathrm{C}-\mathrm{O}$ distance of $2.80 \AA$ and a $\mathrm{C}-\mathrm{H}$ distance of $1.07 \AA$ (A), the lowest-energy path resembles that of the base-free reaction coordinate (Figure 15), showing a TS near a $\mathrm{C}-\mathrm{O}$ distance of $2.10 \AA$ that exhibits a tetrahedral distortion of the

Figure 17. 2-D potential energy surface showing electronic energy changes versus $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ distances. Structure 1 represents the starting structure, A. The dark line indicates the lowest energy route on the PES, traversing the energy barrier near $d(\mathrm{C}-\mathrm{O}) \approx 2.10 \AA(\mathbf{2})$, followed by spontaneous proton transfer to an exogenous base to reach the lowest energy part of the surface. Protonation of $\mathrm{O}_{\text {distal }}$ via the exogenous base produces B $25.5 \mathrm{kcal} /$ mol lower in energy than the structure at 4.

Table 9. MBO for the ortho- $-\mathrm{O}_{\text {proximal }}$ Interaction along the 2-D Reaction Coordinate Including Methylamine as a Proton Acceptora

structure $d(\mathrm{C}-\mathrm{O}) / d(\mathrm{C}-\mathrm{H})$	MBO $\mathrm{O}_{\text {prox }}-$ ortho-C	$\mathrm{O}_{1}-\mathrm{C}_{1}$
$2.80 / 1.08$	0.306	0.690
$2.30 / 1.08$	0.265	0.924
$2.10 / 1.08$	0.322	1.082
$1.90 / 1.10$	0.510	1.316
$1.70 / 1.10$	0.575	1.698
$1.30 / 1.15$	1.101	1.400
$1.30 / 1.58$	1.351	1.253
$1.30 / 2.07$	1.538	1.264

${ }^{a}$ Shown for comparison are the MBO for the phenolate $\mathrm{C}-\mathrm{O}$ bond.
ortho- C and indicates that ring distortion is the rate-limiting step. With the $\mathrm{C}-\mathrm{O}$ distance sufficiently reduced (near 1.40 \AA), proton transfer to the nearby methylamine is energetically favorable, and the system arrives at the lowest-energy region of the plot in the front right with a short $\mathrm{C}-\mathrm{O}$ distance and a long $\mathrm{C}-\mathrm{H}$ distance relative to the starting point.

As with the one-dimensional reaction coordinate (Figure 15), MBO and MO analyses of the structures calculated on the PES of the 2-D reaction coordinate were performed, and the MOs are shown in Figure S9. The system starts as a phenolate bonded to the bis- μ-oxo dicopper(III) core (A), followed by reduction of the two Cu (III) ions to two $\mathrm{Cu}($ III ions by oxidation of the phenolate as evidenced by the two ring-based holes and the a.f.character of the $\mathrm{Cu}(\mathrm{II})$ ions in the unoccupied orbitals. The addition of the methylamine proton acceptor in this simulation allows for late-stage proton transfer. Upon proton transfer, the ring is allowed to regain planarity and is reduced simultaneously by two electrons from $\mathrm{O}_{\text {proximal }}$ as the $\mathrm{C}-\mathrm{O}$ bond forms. The MBO of the $\mathrm{C}-\mathrm{O}$ pair after proton transfer has a value of ~ 1.5 (Table 9) which is higher than the 1.1 MBO calculated above for the base-free system in which there in no proton transfer.

Inspection of the unoccupied MO of $\mathrm{O}_{\text {proximal }}$ in Figure S 7 provides further evidence of catecholate formation. The $\mathrm{C}-\mathrm{O}$ bond does not form fully until electrons are transferred from $\mathrm{O}_{\text {proximal }}$ to the ring. Therefore, $\mathrm{C}-\mathrm{O}$ bond formation results in a marked increase in the $\mathrm{O}_{\text {proximal }}$ coefficient of an unoccupied molecular orbital. The unoccupied ring in-plane antibonding orbital is shown in Figure S9 along with the MO coefficients of both the ring and $\mathrm{O}_{\text {proximal }}$. For the most part, the major contribution to these unoccupied orbitals is the ring, while $\mathrm{O}_{\text {proximal }}$ character is always near 0% regardless of $\mathrm{C}-\mathrm{O}$ distance as long as the ortho $-\mathrm{C}-\mathrm{H}$ bond remains intact. At an ortho-$\mathrm{C}-\mathrm{O}$ distance of $1.30 \AA$, as the proton is transferred to methylamine, the $\mathrm{O}_{\text {proximal }}$ character in these same orbitals increases from 4% to 12% to 17% at $\mathrm{C}-\mathrm{H}$ distances of 1.15 , 1.58 , and $2.07 \AA$, respectively, indicating the formation of two holes on the O (read down the Figure). These data confirm the formation of an asymmetrically bridged catecholate bound to two a.f.-coupled $\mathrm{Cu}(\mathrm{II})$ ions.

A significant barrier to proton transfer exists for all $\mathrm{C}-\mathrm{O}$ distances greater than $1.40 \AA$ (Figure 17). To gauge the effects of the choice of exogenous base and heavy-atom distance between the $o-\mathrm{C}$ and the proton acceptor, an acetate ion was modeled in place of methylamine to provide a stronger base, and the $o-\mathrm{C}-\mathrm{O}_{\text {acetate }}$ distance was restrained to $3.10 \AA$ (as with the ortho- $\mathrm{C}-\mathrm{N}_{\text {methylamine }}$) and $2.40 \AA$ in separate simulations.

Using an ortho $-\mathrm{C}-\mathrm{O}_{\text {acetate }}$ distance of $3.10 \AA$, the PES shown in Figure S11 is generated. As expected, the proton transfer barrier is lower in this simulation since acetate is a stronger base than methylamine in vacuum. Furthermore, the energies of the structures on the right-hand side of the surface (those where the proton has already been transferred to the acetate) are lower than those structures on the left-hand side of the surface where the ortho $-\mathrm{C}-\mathrm{H}$ bond is intact, which is indicative of the relative stability of the $\mathrm{CH}_{3} \mathrm{COOH}$ structure over the protonated methylamine. However, the proton transfer barrier is still too high to be accessible to the reaction at ortho-C-proximal O distances longer than about $1.70 \AA$. Thus, the TS of the reaction is still near a $\mathrm{C}-\mathrm{O}$ distance of $2.10 \AA$, meaning that even in the presence of the stronger proton acceptor, the rate limiting step is still ring distortion.

Constraining the ortho- $\mathrm{C}-\mathrm{O}_{\text {acetate }}$ distance to $2.40 \AA$, yields the 2-D PES given in Figure S12. The TS still exists near a $\mathrm{C}-\mathrm{O}$ distance of $2.10 \AA$, and MO analysis shows that two holes still form on the aromatic ligand. It is evident by these data that the use of a stronger proton acceptor at close proximity does not lead to a remarkably different reaction coordinate than the previous simulations.

Effects of Protonating the Distal O. Whereas $\mathrm{O}_{\text {proximal }}$ of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core is inserted into the aromatic ring via the EAS mechanism, $\mathrm{O}_{\text {distal }}$ is not directly involved. However, the protonation state of $\mathrm{O}_{\text {distal }}$ plays a role in product formation after the $\mathrm{C}-\mathrm{O}$ bond has formed. To investigate the effects of the protonation state of $\mathrm{O}_{\text {distal }}$ on product formation, the structure from the bottom right corner of the PES in Figure 17, in which the ortho- $\mathrm{C}-\mathrm{H}$ proton has transferred to the methylamine, was modified by placing this proton on $\mathrm{O}_{\text {distal }}$. In essence, this treats methylamine as a proton transfer catalyst. Figure 18 displays two isoatomic species generated after ortho- $\mathrm{C}-\mathrm{H}$ bond scission, one with the protonated methylamine (left) and the other with a $\mathrm{OH}_{\text {distal }}$. The species with $\mathrm{OH}_{\text {distal }}$ is $\sim 25 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the protonated methylamine structure, showing that proton transfer via an exogenous base is energetically favorable. Using this model, in which no protons have been added to the

Figure 18. Structures and relative energies of three structures with ortho- $\mathrm{C}-\mathrm{O}_{\text {proximal }}$ distances of $1.30 \AA$ in which the $\mathrm{C}-\mathrm{H}$ bond has dissociated. (Left) protonated methylamine (Middle) protonated $\mathrm{O}_{\text {diatal }}$, proton transferred via exogenous base; proposed structure of \mathbf{B} (Right). Addition of one proton creates "distal" OH_{2} followed by reduction of one Cu and dissociation of dimer; creation of a proposed a.f.-coupled $\mathrm{Cu}(\mathrm{II})$-semiquinone; proposed structure of \mathbf{C}.
reaction, the electronic structure of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core and of the aromatic ring is independent of the protonation state of $\mathrm{O}_{\text {distal }}$, and both species are identified as asymmetrically bound catecholate a.f.-coupled dicopper(II) complexes. Siegbahn, Solá and co-workers ${ }^{48}$ have recently suggested the same intermediate but invoke an intramolecular protonation of the bridging oxo from the ortho-C that contrasts the involvement of an exogenous base as a proton transfer catalyst.

Without adding a proton to the system, the lowest energy species is that of an a.f.-coupled catecholate-dicopper(II) with a bridging OH group. Upon addition of one proton into the simulation at the distal OH position, the system spontaneously dissociates into two mononuclear components (Figure 18, right). The Cu not ligated to the aromatic ligand is reduced to $\mathrm{Cu}(\mathrm{I})$, while the other Cu remains oxidized and bonded to a semiquinone in a bidentate fashion. The dissociation of the dimer and formation of \mathbf{C} allows the DBED ligand on the semi-quinone-bonded Cu to return to equivalent $\mathrm{Cu}-\mathrm{N}$ bond lengths of $2.02 \AA$. The mononuclear $\mathrm{Cu}(\mathrm{II})$ component of the computational system after addition of one proton is an a.f.-coupled $\mathrm{Cu}(\mathrm{II})$-semiquinone and exhibits all of the geometric and electronic structure features consistent with experimental data presented above for \mathbf{C}. This contrasts with the proposal of direct formation of quinone from B as suggested by Siegbahn, Solá and co-workers. ${ }^{48}$

C. Discussion

The hydroxylation of phenolate by $\mathbf{P}^{\text {DBED }}$ has been evaluated spectroscopically and computationally, and the mechanism derived from these data is presented in Scheme 3. Axial binding of an exogenous phenolate to $\mathbf{P}^{\text {DBED }}$, followed by a rapid rearrangement of the side-on peroxy core to a bis- $\mathrm{Cu}(\mathrm{III})$-bisoxide core and an equatorial positioning of coordinated phenolate yields A. rR data clearly identify \mathbf{A} as a monophenolate ligated to a single copper center of a bis- $\mathrm{Cu}(\mathrm{III})$-bis-oxide core. The electronic absorption spectrum of \mathbf{A} possesses two intense bands in the visible region, a high energy band corresponding to oxo to Cu CT in the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core and a low-energy transition indicating phenolate to $\mathrm{Cu}($ III) LMCT. These band assignments are supported by rR profile experiments and (to some extent) TD-DFT calculations. rR profile experiments indicate that the plane of the phenolate ring is oriented between 45° and 90° relative to the plane of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core, again supported by

[^7]the DFT-calculated model of \mathbf{A}. This orientation also aligns the phenolate-bonded HOMO and the $\mathrm{Cu}_{2} \mathrm{O}_{2}$-based LUMO (Figure 14) in a manner that facilitates electrophilic attack by the proximal O atom on the ortho-carbon of the phenolate.

The subsequent ortho-hydroxylation of the ring is accomplished via electrophilic aromatic substitution. This mechanism is supported by the experimentally observed inverse 2° KIE of the ortho $-\mathrm{C}-\mathrm{H}$ bond, indicating a hybridization change at the carbon from sp^{2} to sp^{3} and strengthening of the $\mathrm{C}-\mathrm{H}$ bond at the TS (Scheme 3). Calculations correlate to experiments, indicating phenolate ring distortion as the rate-limiting step of the reaction leading to \mathbf{B} from \mathbf{A}. Coincident with ring distortion is the reduction of the two $\mathrm{Cu}(\mathrm{III})$ ions by CT from the aromatic ring. The phenolate-bonded Cu is reduced through the Cu -phenolate bond and the other Cu is reduced through the partially formed ortho-C $-\mathrm{O}_{\text {proximal }}$ bond. These electronic transitions create a doubly oxidized phenolate bound to two antiferromagnetically coupled $\mathrm{Cu}(\mathrm{II})$ ions. Partial $\mathrm{C}-\mathrm{O}$ bond formation and reduction of the two $\mathrm{Cu}(\mathrm{III})$ ions assuage the energetically unfavorable ring distortion at the TS. The $\mathrm{C}-\mathrm{O}$ bond does not fully form until heterolytic cleavage of the ortho- $\mathrm{C}-\mathrm{H}$ bond and proton transfer to a proposed exogenous base.

Once the $\mathrm{C}-\mathrm{O}$ distance is sufficiently short, proton transfer to the exogenous base is energetically favorable and a catecholate-dicopper(II) complex is formed. Proton transfer to $\mathrm{O}_{\text {distal }}$ via an exogenous base produces the lowest energy structure for this system. B exhibits no intense absorption feature in the visible region. Based on calculations and spectroscopy, \mathbf{B} is proposed to be an asymmetrically bonded catecholatedicopper(II) species with a distal hydroxyl-bridge, which is a.f.coupled.

Addition of 1 equiv of proton to \mathbf{B} produces \mathbf{C}. rR isotope experiments on \mathbf{C} show that one oxygen atom from O_{2} is inserted into the ring. Computationally, addition of one proton to the hydroxy-bridge in \mathbf{B} results in the dissociation of the dimer into two components: a $\mathrm{Cu}(\mathrm{I})-$ diamine $-\mathrm{OH}_{2}$ monomer and a $\mathrm{Cu}(\mathrm{II})-$ semiquinone proposed to be a.f.-coupled. The formation of \mathbf{C} is driven by the double protonation of the distal O atom once the $\mathrm{C}-\mathrm{O}$ bond has been formed. The DFToptimized structure of \mathbf{C} reveals significant $D_{2 d}$ distortion of the four-coordinate $\mathrm{Cu}(\mathrm{II})$ that presumably leads to magnetic orbital overlap and an antiferromagnetic spin state for the system.

Relationship to the Tyrosinase Mechanism. With respect to the proposed tyrosinase mechanism, several parallels can be drawn between the enzymatic function and the reaction detailed

Scheme 3. Spectroscopically and Computationally Derived Mechanism for the Reaction of PDBED with 2,4-Di-tert-buylphenolate via Intermediates A, B, and $\mathbf{C}^{\text {a }}$

B
${ }^{a}$ The rate-limiting step of the reaction occurs between \mathbf{A} and $\mathbf{B}\left(\mathbf{T S}_{\mathbf{A B}}\right)$. EB represents an exogenous base. (Step 1) Phenolate binds to one Cu and rearranges toward the equatorial plane. (Step 2) The rate-limiting step involves distortion of the ortho-C to sp^{3} and double-oxidation of the phenolate in the electrophilic attack upon the ring by the proximal oxygen. (Step 3) Transfer of the ortho- H^{+}to nearby exogenous base with formation of the $\mathrm{C}-\mathrm{O}_{\text {proximal }}$ bond. (Step 4) Protonation of $\mathrm{O}_{\text {distal }}$ via exogenous base. (Step 5) Addition of one proton leads to dimer dissociation into a $\mathrm{Cu}(\mathrm{II})-\mathrm{semiquinone} \mathrm{monomer}$ and a $\mathrm{Cu}(\mathrm{I})$ monomer.
in this study, particularly regarding changes in the electronic structure and protonation state of the biomimetic complex after the transition state. Prior to the TS, the model system and oxyTy may differ significantly. In particular, Karlin and co-workers have side-on-peroxo complexes that intramolecularly hydroxylate an aromatic $\mathrm{C}-\mathrm{H}$ position. ${ }^{17,24,49-51}$ If Ty shares a similar mechanism, an enzymatic analogue of \mathbf{A} would not be present in the protein reaction cycle since Cu would not achieve the $3+$ oxidation state. However, the ability of intermediate \mathbf{A} to hydroxylate phenolates raises the possibility that the active oxidant in Ty may be a bis- μ-oxo species. Extensive spectroscopic studies of oxyTy confirm the presence of a \mathbf{P} species, but not \mathbf{O}. If the $\mathbf{P}^{\text {DBED }}$ hydroxylation reactivity were only examined at 193 K rather than at 153 K , the only spectroscopically observed $\mathrm{Cu}_{2} \mathrm{O}_{2}$ species would also be a side-on peroxy. The issue of whether phenolate binding to oxyTy drives the formation of \mathbf{O} remains an intriguing question. More similarities can be drawn between the $\mathbf{P}^{\text {DBED }}$ system and the enzyme at the TS and beyond. The similar Hammett parameter for the oxyTy and $\mathbf{P}^{\text {DBED }}$ supports the assertion that Ty proceeds through a TS in which aromatic ligand distortion is the rate-limiting step. Recently, altered hemocyanin which hydroxylates monophenolic substrates ${ }^{52,53}$ was shown to exhibit an inverse 2° KIE of 0.9 , which also agrees with experimental and computational data on $\mathbf{P}^{\text {DBED }}$.

[^8]Model reactivity after the TS can also be expanded to the enzymatic system. In the model system, the TS structure proceeds to \mathbf{B} upon dissociation of the ortho $-\mathrm{C}-\mathrm{H}$ bond. The asymmetric binding motif of the catecholate in \mathbf{B} is a slight variation of the mechanism shown in Scheme 1. ${ }^{1,9}$ This deprotonation could be accomplished in Ty by proton transfer to solvent since the active site in Ty is solvent-exposed, or to a nearby flexible His residue that was identified in the crystal structure of Ty. ${ }^{54}$ The formation of \mathbf{C} in the model system, corresponding to the formation of a dicopper(I)-quinone in Ty, is achieved upon the further protonation of the distal OH bridge of B. In the enzyme, this proton could also be provided by solvent, or via a chain of charged residues that reach from near the distal O of the active site through the protein to its far surface. ${ }^{55}$ The formation of the $\mathrm{Cu}(\mathrm{II})-$ semiquinone in the model system is tied clearly to DBED ligation since the enzymatic system produces the quinone and two fully reduced Cu ions. Ty and Hc both have three His N donor ligands that can better stabilize the resultant $\mathrm{Cu}(\mathrm{I})$ over the 2 N ligation of DBED and thus drive production of the catecholate. It is also interesting to note that the direct production of a quinone along with reduction of the $\mathrm{Cu}(\mathrm{II})$ ions to $\mathrm{Cu}(\mathrm{I})$ ions by the proximal oxide without proceeding through a catecholate intermediate is not supported by our results.

[^9]
D. Materials and Methods

Synthetic. Synthetic methods are the same as previously reported. ${ }^{16}$ All solvents and reagents were obtained from commercial sources and used as received unless noted otherwise. THF, 2-methyltetrahydrofuran (MeTHF), and toluene (Aldrich) were distilled from sodium/benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred over $\mathrm{H}_{2} \mathrm{SO}_{4}$, washed with aqueous KOH followed by deionized water, and finally distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ in the absence of light. Acetone was refluxed (5 h) with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and distilled. All solvents were stored under a N_{2} atmosphere. $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right](\mathrm{X})(\mathrm{X}=$ $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, \mathrm{CH}_{3} \mathrm{SO}_{3}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}, \mathrm{BF}_{4}{ }^{-}$) complexes were synthesized by a variation of literature methods. ${ }^{56}$ Preparation and manipulation of $\mathrm{Cu}(\mathrm{I})$ complexes were carried out in a N_{2} drybox (Braun) with O_{2} concentration $<1.0 \mathrm{ppm}$. N, N^{\prime}-Di-tert-butyl-ethylenediamine (DBED) was purchased from Aldrich, distilled in vacuo from CaH_{2}, and stored under N_{2}. The lithium or sodium salts of 2,4-di-tertbutylphenol were prepared according to a reported procedure. ${ }^{57}$ Low-temperature UV-vis spectra were collected with a Polytec PI X-DAP-06 diode-array spectrophotometer (190-820 nm) or a Cary 50 spectrophotometer ($190-1100 \mathrm{~nm}$) with a custom-designed immersible fiber-optic quartz probe with variable path length (1 and 10 mm ; Hellma, Inc.). Constant temperatures were maintained either by a cooling bath (Kinetic Systems, New York) or a dry ice/solvent baths. The solution temperatures were monitored directly by insertion of an OMEGA temperature probe. Solution ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements were performed on a Varian XL 400 MHz instrument using tetramethylsilane as the reference. X-band EPR spectra were collected on a Bruker EMX spectrometer with an ER041XG microwave bridge and ER4102ST cavity; samples were held in a liquid N_{2}-filled finger Dewar.

The purity of the ligands and quantification of 2,4-di-tertbutylphenolate were assessed by ${ }^{1} \mathrm{H}$ NMR or GC-MS on an HP 5970 GC-MS equipped with an AT-5 (ALLTECH) column and mass selective detector, or on an HP 5890 GC equipped with a HP-DB1 column and FID detector, relative to an internal standard (mesitylene).

Synthesis of $\left[(D B E D)_{2} \mathrm{Cu}_{2}\left(\mathrm{O}_{2}\right)\right](\mathbf{X})_{2}$. A 0.5 mM solution of $\left[(\mathrm{DBED})_{2} \mathrm{Cu}_{2}\left(\mathrm{O}_{2}\right)\right](\mathrm{X})_{2}$ was prepared by injecting a $200 \mu \mathrm{~L}$ solution of $[(\mathrm{DBED}) \mathrm{Cu}(\mathrm{MeCN})](\mathrm{X})(25 \mathrm{mM}$, THF) into a precooled (193 K), $\mathrm{O}_{2}(1 \mathrm{~atm})$ saturated solution (5 mL) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetone, THF, MeTHF, or toluene. The following data are for $\left[(\mathrm{DBED})_{2} \mathrm{Cu}_{2}\left(\mathrm{O}_{2}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 193 \mathrm{~K}, 400 \mathrm{MHz}\right)$: $\delta 1.18(\mathrm{~s}, 36 \mathrm{H}$, tert-Bu), $2.05(\mathrm{~s}, 24 \mathrm{H}, \mathrm{MeCN}), 2.61(\mathrm{~s}, 4 \mathrm{H}), 2.67$ (s, 4H). UV-vis ($\lambda_{\text {max }} \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, THF): 350 (36000), 485 (1200), 605 (900). EPR ($77 \mathrm{~K}, \mathrm{MeTHF}$): silent.

Synthesis of Intermediate A. A 0.5 mM solution of $\left[[\mathrm{Cu}(\mathrm{DBED})]_{2}\left(\mathrm{O}_{2}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}\left(\mathbf{P}^{\text {DBED }}\right)$ in THF was prepared by injecting $200 \mu \mathrm{~L}$ of a $[\mathrm{LCu}(\mathrm{MeCN})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ solution $(25 \mathrm{mM}$, THF) into a precooled (153 K), O_{2}-saturated 2 MeTHF solution (5 $\mathrm{mL})$. The bright-green species \mathbf{A} was prepared by addition of 2.5-3 equiv of sodium 2,4-di-tert-butyl-phenolate to the N_{2}-purged $\mathbf{P}^{\text {DBED }}$ solution at 153 K . The reaction mixture was allowed to react for 60 s and then frozen in liquid N_{2} for rR analysis. The solution is EPR silent at 77 K . UV-vis ($\lambda_{\text {max }}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$), 2MeTHF): 295 (20 000), 418 (18000), 630 (3800).

Synthesis of Intermediate B. The light-brown species B was prepared by addition of 1-3 equiv of sodium 2,4-di-tert-butylphenolate to the $\mathbf{P}^{\text {DBED }}$ solution at 193 K , or by thermal decay of species \mathbf{A} at 153 K . After the complete decay of species \mathbf{A}, the solution was frozen in liquid N_{2} and the sample used for rR analysis. The solution is EPR silent at 77 K . UV-vis $\left(\lambda_{\max }\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right.$, 2MeTHF): 290 (16 000).

Synthesis of Intermediate \mathbf{C}. The purple species \mathbf{C} was prepared by addition of 1 equiv per phenolate added of a $100 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$

[^10]solution in THF to a solution containing species B at 193 K . The solution was then frozen in liquid N_{2} and the sample used for rR analysis. The solution is EPR silent at 77 K . UV-vis $\left(\lambda_{\text {max }}\left(\varepsilon, \mathrm{M}^{-1}\right.\right.$ cm^{-1}), 2MeTHF): 290 (16 000), 550 (3000).

Oxidation of Exogenous Substrates. A solution of [(DBED) 2^{-} $\left.\mathrm{Cu}_{2}\left(\mathrm{O}_{2}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}(5 \mathrm{mM}, 5 \mathrm{~mL})$ in THF (N_{2} atmosphere, 193 K) was prepared from $[(\mathrm{DBED}) \mathrm{Cu}(\mathrm{MeCN})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ and excess O_{2}. For anaerobic reactions, the excess O_{2} was removed prior to addition of substrates by purging with N_{2} for 15 min .

The reaction of 2,4-di-tert-butylphenolate was performed at 193 K in THF with excess O_{2} removed. Addition of 1 equiv of substrate ($0.05 \mathrm{~mL}, 50 \mathrm{mM}$ solution in THF) changed the color from dark green to light yellow-green. After 15 min , the reaction was quenched with $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{M}, 2 \mathrm{~mL})$, and the solvent was removed under vacuum. The residue was extracted with chloroform and analyzed by ${ }^{1} \mathrm{H}$ NMR and GC-MS. The amounts of phenol, catechol, and quinone were quantified by comparing with known mixtures of pure compounds. For ${ }^{18} \mathrm{O}-\left[(\mathrm{DBED})_{2} \mathrm{Cu}_{2}\left(\mathrm{O}_{2}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, the residue was analyzed by negative mode ESI-MS (Finnegan LCQ) to determine the ratio of ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ products, revealing more than $80 \%{ }^{18} \mathrm{O}$ incorporation.

Resonance Raman Spectroscopy. Laser excitation lines (provided by a Coherent Innova Sabre $25 / 7 \mathrm{Ar}^{+}$or a Coherent I90C-K $\mathrm{Kr}^{+} \mathrm{CW}$ ion laser) were chosen to enhance and probe the copper-oxygen modes. rR spectra were obtained using a Princeton Instruments ST-135 back-illuminated CCD detector on a Spex 1877 CP triple monochromator with 2400,1800 , and 1200 grooves $/ \mathrm{mm}$ holographic spectrograph grating. Spectral resolution was $<2 \mathrm{~cm}^{-1}$. Sample spectra were collected at $\sim 77 \mathrm{~K}$ with a liquid N_{2}-filled finger Dewar (Wilmad) that was hand-spun to minimize sample decomposition (at excitation energies $>458 \mathrm{~nm}$) during collection. Typical rR sample concentrations were in the range of $2-5 \mathrm{mM}$ of Cu to minimize self-absorption. Isotopic substitution was achieved by oxygenation with ${ }^{18} \mathrm{O}_{2}$ (Icon, 99%).

Computational Details. All calculations were performed using the Gaussian03 Revision D. 01 or E. 01 software suite. ${ }^{58}$ Copper and oxygen atoms were treated with the Alrich's all-electron TZVP basis ${ }^{59,60}$ throughout. All other atoms were treated with the Pople split-valence $3-21+G^{*}$ basis. ${ }^{61-63}$ The B3LYP density functional ${ }^{64-66}$ was also used throughout. Geometry optimizations were performed using a restricted formalism. The default SCF convergence criteria and Berny optimization algorithm ${ }^{67}$ were used throughout. Broken-symmetry single point calculations and population analyses were performed by first generating the high-spin wave function and using the guess=(read,mix) keyword to generate the unrestricted broken-symmetry singlet wave function. Wave function stability was confirmed using the stable $=$ opt keyword. The broken-symmetry energies, given in figures throughout the manuscript, were calculated using the spincorrected method by Yamaguchi et al. given by eq $2 .{ }^{68}$
(58) Frisch, M. J.; et al. Gaussian03, Revision D. 01 or E.01; Gaussian, Inc.: Wallingford, CT, 2004.
(59) Schaefer, A.; Horn, H.; Alrichs, R. J. Chem. Phys. 1992, 97, 25712577.
(60) Schaefer, A.; Huber, C.; Alrichs, R. J. Chem. Phys. 1994, 100, 52895835.
(61) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939-947.
(62) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797-2803.
(63) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; Defrees, D. J.; Pople, J. A.; Binkley, J. S. J. Am. Chem. Soc. 1982, 104, 5039-5048.
(64) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(65) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
(66) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206.
(67) Schlegel, H. B. J. Comput. Chem. 1982, 3, 214-218.
(68) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys. Lett. 1988, 149, 537-542.

$$
\begin{equation*}
{ }^{1} E=\frac{2^{B S} E-\left\langle S^{2}\right\rangle_{B S}{ }^{3} E}{2-\left\langle S^{2}\right\rangle_{B S}} \tag{2}
\end{equation*}
$$

TD-DFT calculations were performed using the default formalism in Gaussian03, ${ }^{69-71}$ and the resulting UV-vis spectra were calculated using the SWizard program, revision $4.4,{ }^{72}$ using the Gaussian model using the half-bandwidths, $\Delta_{1 / 2}$, of $3100 \mathrm{~cm}^{-1}$. Mulliken populations and Natural Bonding Orbital ${ }^{73,74}$ analyses were computed using the stabilized wave function for each structure. Molecular orbital coefficients were parsed and viewed using QMForge. ${ }^{75}$ MO diagrams were constructed from G03 cube files using VMD 76 and the Tachyon ray tracer ${ }^{77}$ routine. Normal modes
(69) Bauernschmitt, R.; Alrichs, R. Chem. Phys. Lett. 1996, 256, 454464.
(70) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439-4449.
(71) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218-8224.
(72) Gorelesky, S. I. SWizard, revision 4.4; University of Ottawa: Ottawa, Canada, 2008.
(73) Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1988, 46, 41-62.
(74) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211-7218.
(75) Tenderholt, A. L. QMForge, version 2.1; Stanford University: Stanford, CA, 2008.
(76) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33-38.
(77) Stone, J. Tachyon ray tracer, version 0.97; University of Illinois at Urbana-Champaign: Urbana, IL, 2007.
were visualized using GaussView ${ }^{78}$ and Molden. ${ }^{79}$ Some 2-D PES surfaces were generated with gnuplot.

Acknowledgment. Funding was provided by the NIH GM50730 (T.D.P.S.) and NIH DK31450 (E.I.S.). Some calculations were performed on the Stanford Bio- X^{2} cluster, supported by NSF Award No. CNS-0619926. Abhishek Dey is thanked for calculating the excited-state distorted phenolate structures. Computing resources were also partly supplied by Prof. Kenneth M. Merz, Jr. and the J. C. Slater Computing Laboratory in the Quantum Theory Project at the University of Florida. Some images in this work were made with VMD software support. VMD is developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign.

Supporting Information Available: Figures referred to in the text; structures related to potential energy curves; and complete ref 58 . This material is available free of charge via the Internet at http://pubs.acs.org.

JA807898H

(78) Dennington, I. R.; Todd, K.; Millam, J. M. ; Eppinnett, K. ; Hovell, W. L.; Gilliland, R. GaussView, version 3.09; Semichem, Inc.: Shawnee Mission, KS, 2003.
(79) Schaftenaar, G.; Noordik, J. H. J. Comput.-Aided Mol. Des. 2000, 14, 123-134.

[^0]: ${ }^{\dagger}$ Current address: Department of Chemistry, Washington University, St. Louis, MO 63130.
 (1) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563-2605.
 (2) Klinman, J. P. Chem. Rev. 1996, 96, 2541-2562.
 (3) Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev. 1992, 92, 521-542.
 (4) Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E. Angew. Chem., Int. Ed. 2001, 40, 4570-4590.
 (5) Eickman, N. C.; Solomon, E. I.; Larrabee, J. A.; Spiro, T. G.; Lerch, K. J. Am. Chem. Soc. 1978, 100, 6529-6531.
 (6) Hazes, B.; Magnus, K. A.; Bonaventura, C.; Bonaventura, J.; Dauter, Z.; Kalk, K. H.; Hol, W. G. Protein Sci. 1993, 2, 597-619.
 (7) Klabunde, T.; Eicken, C.; Sacchettin, J. C.; Krebs, B. Nat. Struct. Biol. 1998, 5, 1084-1090.
 (8) Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. J. Biol. Chem. 2006, 281, 8981-8990.

[^1]: (34) Eickman, N. C.; Himmelwright, R. S.; Solomon, E. I. Proc. Natl. Acad. Sci. 1979, 76, 2094-2098.
 (35) Baldwin, M. J.; Root, D. E.; Pate, J. E.; Fujisawa, K.; Kitajima, N.; Solomon, E. I. J. Am. Chem. Soc. 1992, 114, 10421.

[^2]: ${ }^{a}$ Normal modes (from Table 4) are on the left where the red arrows indicate bond wagging and blue arrows indicate bond stretching. DFT-calculated distortions from one-electron ionized species are shown on the right. Red arrows indicate hydrogen angular distortion, and blue arrows indicate changes in carbon-carbon or carbon-oxygen bond distance relative to phenolate in the ground state.

[^3]: (38) Pau, M. Y. M.; Davis, M. I.; Orville, A. M.; Lipscomb, J. D.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 1944-1958.
 (39) Schenk, G.; Pau, M. Y. M.; Solomon, E. I. J. Am. Chem. Soc. 2004, 126, 505-515.
 (40) Szilagyi, R. K.; Metz, M.; Solomon, E. I. J. Phys. Chem. A 2002, 106, 2994-3007.

[^4]: (42) Casella, L.; Monzani, E.; Gullotti, M.; Caragnino, D.; Cerina, G.; Santagostini, L.; Ugo, R. Inorg. Chem. 1996, 35, 7516-7525.
 (43) Reim, J.; Krebs, B. J. Chem. Soc., Dalton Trans. 1997, 3793-3804.

[^5]: (44) Lynch, M. W.; Valentine, M.; Hendrickson, D. N. J. Am. Chem. Soc. 1982, 104, 6982-6989.
 (45) Strufkens, D. J.; Snoeck, T. L.; Lever, A. B. P. Inorg. Chem. 1988, 27, 953-956.

[^6]: ${ }^{a}$ In \AA.

[^7]: (48) Mireia, G.; Luis, J. M.; Solá, M.; Siegbahn, P. E. M. J. Biol. Inorg. Chem. 2008, 14, 229-242.

[^8]: (49) Becker, M.; Schindler, S.; Karlin, K. D.; Kaden, T. A.; Kaderli, S.; Palanché, T.; Zuberbühler, A. D. Inorg. Chem. 1999, 38, 1989-1995.
 (50) Cruse, R. W.; Kaderli, S.; Karlin, K. D.; Zuberbühler, A. D. J. Am. Chem. Soc. 1988, 110, 6882-6883.
 (51) Karlin, K. D.; Nasir, M. S.; Cohen, B. I.; Cruse, R. W.; Kaderli, S.; Zuberbühler, A. D. J. Am. Chem. Soc. 1994, 116, 1324-1336.

[^9]: (52) Suzuki, K.; Shimokawa, C.; Morioka, C.; Itoh, S. Biochem. 2008, 47, 7108-7115.
 (53) Morioka, C.; Tachi, Y.; Suzuki, S.; Itoh, S. J. Am. Chem. Soc. 2006, 128, 6788-6789.
 (54) Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. J. Biol. Chem. 2006, 281, 8981-8990.
 (55) Op't Holt, B. T.; Dustman, J.; Solomon, E. I. ChemTracts Inorg. Chem. 2006, 19, 435-444.

[^10]: (56) Kubas, G. J.; Monzyk, B.; Crumbliss, A. L. Inorg. Synth. 1979, 19, 90-92.
 (57) Mandal, S.; Macikenas, D.; Protasiewicz, J. D.; Sayre, L. M. J. Org. Chem. 2000, 65, 4804-4809.

